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The differential conditions are obtained which must be satisfied by the energy tensor of a null, source-
free electromagnetic field. At the same time a method is indicated of determining the electromagnetic
field when the energy tensor satisfying the necessary conditions is given.

1. INTRODUCTION

IVEN a symmetrical tensor field, 7,,, we ask
ourselves two questions: (1) What are the con-
ditions that this could be the energy tensor of a
source-free electromagnetic field ? (2) If the conditions
are satisfied, how can the electromagnetic field be
determined ?

For the general case, when the electromagnetic
field is not null, these questions have been answered
by Rainich! and later again by Misner and Wheeler.?
However, the case of a null electromagnetic field is
substantially different, as pointed out by Witten,?
and no answers have been given for this case. The
purpose of this paper is to answer the questions for
the case of a null field. In effect the two questions are
considered together, the process of secking the
electromagnetic field giving the necessary conditions
that it should exist.

We assume the signature of the metric to be +, +,
+, —. g, is the metric tensor, and g is the determi-
nant |g,,|. Ordinary differentiation with respect to x*
is indicated by a comma and covariant differentiation
by a semicolon.

1 G. Y. Rainich, Trans. Am. Math. Soc. 27, 106 (1925).

2 C. W. Misner and J. A. Wheeler, Ann. Phys. (Paris) 2, 525
(1957).

3 1. Witten, in Gravitation: An Introduction to Current Research,
L. Witten, Ed., (John Wiley & Sons, Inc., New York, 1962).
Chap. 9.

f,, is the antisymmetric tensor describing the
electromagnetic field, and its dual is defined as
0 = 3(—g) Hemesf,, (1.1)

where e***# is the numerical antisymmetric tensor of
weight +1. Thus

0 = —H— 8 s, (1.2)
where ¥, is the numerical antisymmetric tensor of
weight —1.

Two invariants can be formed from the tensor f,,,

I, = %faﬁfaﬁ = _%*faﬁ*faﬂ’ (1.3)
I, = §f g (1.4)
The electromagnetic energy tensor is
Tuv = fuaf: - i’guvfaﬁfaﬂ
= §(fL7 + *,.*0). (1.5)
From (1.5) we find
T: =0, (1.6)
TpaT: = %guvTaﬁTap = igusza (17)
where
T =T,T* = 2+ 13, (1.8)

Equations (1.6) and (1.7) are two algebraic conditions
which must be satisfied by the tensor T,,. The third
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algebraic condition is that in local Minkowski coordi-
nates at any point, T,, must be positive. In tensor
form this may be written as

foﬁvavp 2 0’

where v* is any timelike vector.

(1.9)

2. THE NULL CASE

The electromagnetic field is said to be “null” when
T =0, i.e., when

L=1L=0. 2.1
In this case (1.7) becomes
T,.I;=0 (2.2)
and we may write
T,=CC,. (2.3)

Thus (1.9) is automatically satisfied.
By (1.6) it is seen that

C,C*=0, 2.4
i.e., C, is a null vector. It is completely determined
by Eq. (2.3). The sign is immaterial.

Let G, be any unit vector normal to C,. Since it is

normal to a null vector it must be spacelike, i.e.,
G,G* = +1. The tensor

f,=CG,—CG, @.5)
is a suitable tensor to use as an electromagnetic field
tensor, for if we substitute in (1.5) it gives (2.3). The
dual may be written as

*f, = CH, — C,H,, (2.6)

where H,, is a unit spacelike vector normal to C, and
G, . Other suitable tensors can be found by the duality
rotation

f,, =f,cosa + *f, sina, 2.7
where « is an invariant, but it is easily seen that this
is equivalent to choosing new unit vectors

G, = G,cosa + H, sin «, (2.8)
H, =H,cosa — G, sin «.
3. DIFFERENTIAL CONDITIONS

If f,, is of the form (2.5) the algebraic conditions
(1.6) and (2.2) are satisfied. But f,, also has to satisfy
the Maxwell equations for a source-free electromag-
netic field. These are

fia =0, *fi, =0,
which may also be written, respectively,
Muvie + Mg + Moun =0,
qu;d + fvv;u + f.tm;v =0.

(3.1)

(3.2)
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In terms of the vectors C,, G,, H,, (3.1) gives
CG,—GC,L+GC,,—CG,, =0, (3.3

whence
C*CfG,,; = 0, G'G’C,, =C;,

with similar results for H, .
From (3.2) we get

G(Copy — Cu) + G(C,s — Cp) + G(Cy — Cyh)
+ CAGy;s — Go) + CY(G,y — Gi)
+ C,(G,, — G,,)=0. (3.5
Multiply by G°C® and we get, using (3.4),

(3.4)

C,..C* = —C,C5%. (3.6)

This may be written (C*C?),, = 0, whence T« = 0.
This is the equation of conservation which, as is well
known, derives from Maxwell’s equations. Equation
(3.6) also shows that the vector field C, defines a
congruence of null geodesics. Equation (3.6) consists
of three independent differential conditions on C
ie,onT,.

Again, multiply (3.5) by C° and use (3.6), and we
get

Cu[Ca(Gv;a - Ga;v) -

"o

G,CJ

= C,[CG,, —G,,) — G,C.l,
whence
C(Gua — Gu) — G,L5 = 4,C,,
where 4, is some invariant,
Similarly, we find

C(H,e — Hy) — HCG, = 4,C,,

(3.7)

where 2, is some invariant.
Eliminate C*G,,, between (3.3) and (3.7), we find

Ga(cu;a + Ca;u - 2guac;ﬂﬁ) = Cu(ly -
Similarly, with H,, for G, and 2, for 4,.

GL). (3.8)

4. CONDITIONS THAT (3.8) ARE CONSISTENT
Write
4.1

and let e*” be the minor of E,, in the determinant
|E,,l, so that

Euv = c:u;v + Cv;u - 2guvcfa’

E,.e” =8 [El

Multiply (3.8) by e** and we have

(4.2)

G" [E,yl = (4, — GL)Cpe.
Using (3.6) and (A2) of the Appendix, we find that
C,,e" V= gJCV,
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where J is an invariant. So that

G’ [Eyl = (4, — GRgJC".
Multiply by G, and we get
|E,sl = 0. 4.3)

This is another differential condition on C,, i.e., on
T,,. We show that it is, effectively, two conditions.

From (4.3) it follows that there must be a vector
A¥# such that

AC,.+C,, —2g.ChH=0.
We also have by (3.6)
C“(C”;a + Cu;u + guac;ﬂﬁ) = 0.

(4.4)

(4.5)

Now, consider the process of finding the principal
directions and principal invariants determined by the
tensor C,., + C,.,.

We solve the equation

1€y +Cop — Ugnl =0 (4.6)
for U, and find four roots U,, U,, Us, U,. By (4.4)
and (4.5) two of these roots are

U, =2C%, Uy=—C3, %)

and the corresponding vectors are A* and C#. The
sum of the roots, U; + U, + Uy + U,, is equal to
minus the coefficient of U3 in the expansion of (4.6).
By (A1) in Appendix A this is 2C% , so that

U, + U, =C5.

From this point we assume that C% % 0 in the
domain considered. When C% =0 we have the
“null-null” case which is considered separately in
Sec. 10.

The fact that the vector corresponding to Us is a
null vector leads to only one possibility, namely,

Uy=Uy=2C,, Uy=U,=—-C%. (48)

However, the elementary divisors corresponding to
the pairs of roots may be simple or multiple. (See
Eisenhart,* pp. 111-112.) In the present case there
are only two practical possibilities: (1) All the ele-
mentary divisors are simple, in which case U; = U,
correspond to a pencil of vectors all of which satisfy
(4.4), and U; = U, correspond to a pencil of vectors,
all of which satisfy (4.5). The two pencils are normal
to each other. (2) The elementary divisors are
(U-U,), (U=U,), and (U — U,)®. In this case
there is a pencil of vectors corresponding to U; = U,

4 L. P. Eisenhart, Riemannian Geometry, (Princeton University
Press, Princeton, New Jersey, 1926).

669

and satisfying (4.4), and a single null vector corre-
sponding to U, = U, and satisfying (4.5). This nuil
vector is, of course, C*.

5. DETERMINATION OF AN ORTHONORMAL
TETRAD

Case 1: Since C* appears in the second pencil, the
second pencil must consist of spacelike and timelike
vectors. The first pencil must therefore consist of
spacelike vectors.

Let X* and Y* be a pair of unit vectors in the second
pencil, normal to each other, and suppose that X* is
spacelike and Y* timelike. If we give suitable signs
to X* and Y#, we can arrange that

X* — Y¥ = nC*, (5.1)

where » is an invariant. The other null vector in the
pencil is then given by

X* + Y* = (2/n)S~. (5.2)

The choice of invariant in (5.2) is made, for conven-
ience, so that

S°C, = 1. (5.3)

Although X* and Y* are to some extent arbitrary, the
vector S# is determined unambiguously. This must be
so since there are only two null vectors in a pencil,
while the magnitude and sign of S# are fixed by (5.3).
The orientation of the pencil is determined by

XY’ — X'Y* = C*S’ — s (5.9
We also have
X*XY — Y*Y' = C*SY + C'SH, (5.5)

In the first pencil we choose a pair of unit spacelike
vectors normal to each other, A* and B*, say. These
are to some extent arbitrary, but the quantities
A#A* + B#B" are definite, while the quantities A*B, —
A'B#, which determine the orientation of the pencil,
are definite except for sign. We may fix the sign of the
latter by the convention

Aqu - AvBu = (_g)%nuvaﬂanﬂ
= (=0* My CS. (56)
A, and B, are arbitrary to the extent that they may
be replaced by
A‘: =A,cosax+ B, s%n a, 57
B,=B,cosa — A, sina,

where « is any invariant. If there is any difficulty in
finding such a pair, they can be determined by
choosing any spacelike vector z, not in the pencil of
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C, and S,, i.e., linearly independent of C, and S,.
We may then take

A, = (— ), 7*C"S[22, — 2ZCH'S,)] 2,

(5.8)
B, = —(— )0, AC'S.

Case 2: The pencil of vectors is normal to C*, and
they are therefore spacelike. We take any pair of unit
vectors A* and B# in this pencil, normal to each other.
There is a pencil of vectors normal to the former
pencil, of which C* is one of the null vectors. Let S#
be the other null vector in this second pencil. Then we
may define pairs of unit vectors X* and Y* normal to
each other in this pencil by (5.1) and (5.2). As in
Case 1 we fix the relative signs of A* and B by the
convention (5.6).

Cases 1 and 2: We now treat the two cases together.
The unit vectors A*, B#, X#, and Y* form an ortho-
normal tetrad of which Y# is the timelike member.
Hence by (B1) in Appendix B we have

8o =AA, +BB, + XX, ~Y)Y,
=AA, +BB,+CS,+CS,.

We may also write

(5.9)

C..+C,,=24,A, +BB)C,
- XX, - YY), +¢qC,C,
=2(AA, + B,B)C,
—(C,S, + C,S))C: + ¢9C,C,, (5.10)
where ¢ is an invariant which vanishes in Case 1.

It is seen that Case 2 is slightly more general than
Case 1. In fact, Case 1 corresponds to Case 2 with
q=0.

Eliminate (A, A, + B,B,) between (5.9) and (5.10)
and we get

Env = Cu;v + Cvm - Zguvc?a
= —3(CSS, + C,8,)C% + qC,C,, (5.11)
whence we deduce

C., — C.E,, — CkE,, = (65,C — qC,)C.C,.

(5.12)
Finally, eliminating S, , we have

C,C,E,, + C.C,E,, =C,CE, +CCE,,. (513)

These equations are in terms of C, and its deriva-
tives only, and therefore give necessary differential
conditions which must be satisfied by C, in order that
(3.8) should be consistent. A fortiori they are differen-
tial equations which must be satisfied by T,
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We also deduce from (5.11)
Esz: = _3C?1(Euv + qCqu)-

S, and g may be determined in terms of C, as follows.
Provided (5.13) holds we may determine from (5.12)
the vector

(5.14)

R, = 65,C% — ¢C,. (5.15)

We then have
q = —R°R,[12C%,
S, = (R, + gC))/6C,.

If ¢ = 0 a further condition is satisfied by C,, for by
(5.14) we then have

(5.16)

E,.E? = —3CLE,,. (5.17)

It is found that (5.13) consists of 30 different equa-
tions of which 10 are identities. Of the remaining
20 only five are independent. Equation (5.14) provides
no further conditions except when g = 0, and then
provides one further condition equivalent to ¢ = 0.
But this is not a necessary condition. The three con-
ditions (3.6) are deducible from (5.13), so that (5.13)
effectively contains two more conditions not contained
in (3.6). This at first is surprising in view of the fact
that the additional two conditions must be equivalent
to (4.3). The fact is that by virtue of (3.6) |[E,,| reduces
to the form

[yl = —g(CAP* + Q7).
Thus if C% 7 0 we must have P =0, Q0 =0, ie.,
two conditions.

6. FORM OF G, AND H,

If conditions (5.13) are satisfied, then Egs. (3.8) are
satisfied by any vector G, normal to C,,.
Any vector normal to C, must be of the form

G,=A,cos0 + B,sinf + p,C,, 6.1)

where 0 and p, are invariants. p, clearly has no
significance, since it disappears in the expression
C,G, — C,G,. Substituting (6.1) in (3.8) and using
(5.11), we find that (3.8) is satisfied provided

A, =G — 3p,Ch.

This in effect fixes A, which is otherwise undetermined.
Similar results hold for H, which may be written

H,=B,cos 6 — A,sin0 + p,C,. (6.2)

It does not follow that G, and H, satisfy the
differential equations (3.3) and its pair. We look at
this further in Sec. 8 and find that, provided certain
integrability conditions are satisfied, (3.3) and its pair
in general determine 6 to within a constant. First of
all we deduce some required formulas in Sec. 7.
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7. MISCELLANEOUS FORMULAS
The Invariant N

Let
ZH = (_ g)—‘}enaﬁwcacﬁ;y ,
then we find
_(_g)%nuvﬂacﬂza = Cu.cv;ﬂcp - Cv.Cu;BCﬂ
=0 by@3.6).

Thus C*ZY = C'Z* so that Z* = NC#, where N is an
invariant. Thus we have the important result

(—gyte'C,C,, = NC~. (1.1)

In what follows we make considerable use of the
orthonormal tetrad, A,, B,, X,, Y, or rather the
equivalent set of vectors A,, B,, C,, S,.

The Form of C,., — C

Vi

If we express C,., — C,,, in terms of its six tetradic
components [see Appendix, (B3)], we find that by
virtue of (3.6) and (7.1) two of these components vanish
and we are left with

C. —C,.=NAB,— AB,) —CiCS, — CS)
+ P(CuAv - CvAu) + G(Cqu - CvBu)’

(1.2)
or, equivalently

(_ g)—%eﬂvuﬁca;ﬁ
= N(C*S" — C'S*) + C%(A*B" — A’B¥)
+ p(C*B* — C'B*) — o(C*A® — C’A¥).
(1.3)
p and o are invariants which depend on the choice of
A, and B, but (p* + ¢?) is independent of the choice,
and depends only on C,,.

By (5.11) and (7.2) we may now write C,., in terms
of the tetrad and invariants:

C;l;v = C:z(guv - 2Cusv - Cvsu) + %N(Aqu - AvBu)
+ $p(C,A, — C,A) + }0o(C,B,— CB,)) + 3qC,C..

(7.4)
From (7.4) we deduce

c;aﬂC?az = 3(C;aa)2 - %Nz,

CyCh = 2(Ce)* + 3N~ (7.3)
These give N2 explicitly in terms of C,.

Further Properties of N
By (7.2) and (7.3) we find

(—gytemioC, C,, = 2NCE. (7.6)
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Differentiate (7.1), and we get
(NCH),, = (_g)_iewmca;ucﬁ;y + (—g)_%e“"ﬁ"’CaCﬂ;m.
The second term on the right-hand side vanishes by
the properties of the Riemann tensor. Using (7.6) we
get

(NC9,, = —2NCg,,
whence

N ,C*= —3NC%. (1.7

It follows that
(vc), =, (7.8)
so that N} is proportional to the “density of rays” in

the congruence of null geodesics defined by C,. We
also find, by (7.7) and (3.6),

c(N-cw, =o. (7.9)

These are the conditions for a ‘““geodesic congruence”
in their canonical form.

Formulas Involving A,;,, B,.,

Differentiate (5.9) covariantly with respect to x°
and multiply by A, we get

Au;a = _Bu.Aa Ba;a - Cu.Aasa;a- - Su.AaCa;a . (710)
Similarly,
Bu;a =Ay.AaBa;o - Cu.Basa;a - Su.BaCa;a' (711)

By (7.10) and (7.11) and using (5.6) we deduce
A*B,, — A’B

SR Ay svoag K
= (A"B* — A’B)(C,.,S5y — CunSp)
= —(—g) e C,S.(C,, S50 — ConSp).  (7.12)
8. THE DETERMINATION OF ¢

Having chosen a specific pair of unit spacelike
vectors A, and B, normal to each other and satisfying
(4.4), we take G, and H,, to be the expressions (6.1)
and (6.2), and substitute in (3.3) and its pair. We get

(C*'A* — C°A"),, + (C"B* — C'BM)6, =0, (8.1)
(C'B* — C°B*),, — (C*A" — C°AM6, = 0. (8.2)
Multiply (8.1) in turn by B, and S, we get
C*f, = B,(C*A* — C*A*),, = A*BC,, — C'B*A,,

= —}N + C*. A’B;, by(7.4), (8.3)
B0, = —S,(C*A* — C"A"),,

= —A% — A'SFC,, + C*SPA,,

= —p + B*. APB,, (8.4)

using (7.10) and (7.4). Similarly, multiply (8.2) in
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turn by A, and S,, we get (8.3) again, and as in (8.4)
we find
(8.5)

A%, =0+ A*- A%B,,.
By Appendix (B3) we may write
0, = (A% )A, + (BB, + (X0,)X, — (Y0,)Y,
= (A"0 YA, + (B0,)B, + (C*0,)S, + (8% ,)C,.
(8.6)
Substituting (8.3), (8.4), and (8.5) in (8.6), we get
6, = (A’A, + B’B,)A"B,; + oA, — pB,
— (3N — C°A’B,)S, + (S°0,)C,
= A’B,,, + 6A, — pB, — INS,
+ C,(8°0,, — S"A’By,), using(5.9). (8.7)

S0, is undetermined, and we may therefore write
S8, — A%B,) = w, (8.8)

where w is an undetermined invariant. Using (7.3)
we may write (8.7) in the form

6, =L, = A%B,,, — (—2)*1,s,S°C""

+ #NS, + wC,. (8.9)
This gives 6 to within a constant provided the right-
hand side is integrable. The conditions of integrability
are L., = L,,,. Carrying out this operation and using
(7.12), we may write the conditions wholly in terms of
C,.S,, N, and w:

Kuv = (Cz;usﬂ;v - Ca;vsﬂ;u + %Raﬂuv)(_g)—*eaﬂwcyse
- (_g)inuvaﬂ(camse + Cﬂ;esa + Cr;asﬂ);e
+ é(NSu);v - %(Nsv)m
= (WCV);u - (Wcu);v'
The invariant w in (8.10) is undetermined. In fact,
the six equations (8.10) may be regarded as one to
determine w and five conditions of integrability.

Denote the left-hand side of (8.10) by K,,. We may
eliminate w , from (8.10) and obtain

(8.10)

H— g)"}e““’”CaK,;v = w(—g) —‘lfeuaﬁycacﬁw
= wNC* by (7.1). (8.11)

These are three independent equations. If N 7 0 they
may be regarded as one to determine w and two con-
ditions of integrability. If these are satisfied and we
substitute this value of w in (8.10), we then have
three more conditions of integrability. Whichever way
we look at it, there are five conditions of integrability.
These, together with the five conditions contained in
(5.13), give ten differential conditions to be satisfied by
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the energy tensor T,, in order that it should represent
a source-free electromagnetic field.

If these ten conditions are satisfied, 6, is deter-
mined from (8.9), and 6 is determined to within an
arbitrary constant, except in a special case considered
in Sec. 9. We note that 0 , depends on the choice of
A, and B,. This is because 6 is measured against the
fields of A, and B,. A transformation of A, and B,
of the form (5.7) simply has the effect of subtracting
the invariant angle « from 6. On the other hand, the
conditions of integrability are independent of the
choice of A, and B, as they should be. By (2.5) and
(6.1) the electromagnetic field is then given by

f,, = (C,A, — C,A)cos b 4+ (C,B, — C,B,)sin 6.
(8.12)
9. SPECIAL CASE

It may happen that C, has the property that an
invariant a exists such that
aC, =¢,, .1

where ¢ is an invariant. Then ka can be added to w,
where k is any constant, without affecting the con-
ditions (8.10). In this case a more general solution of
(8.9) exists, namely,

6, =6, + kaC, =0, + ke ,,

0" =6 + ke. ©-2)

By (9.1) we have
(@Cy = (aC),,,
whence
C,.,—C,,=C(oga), —C,(oga),.
Comparing this with (7.2), we see that a necessary
condition that C, should have this property is that

N =0. 9.3)

In effect, this special case means that the solution

of (8.10) for w, if it exists, is of the form
w =.w, + ka, .4

where w,y and a are invariants and k is any constant.
As we have seen, this can only happen when N = 0.

10. THE NULL-NULL CASE

In this case, throughout the domain considered,

C,=0. (10.1)
(3.6) now becomes
cC,, =0, (10.2)
whence
C(C,. +C.0)=0. (10.3)
(3.8) becomes g *
G*C,.. + C,,)) = C,(4, — G3). (10.4)
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In order to satisfy these conditions it is necessary and
sufficient that C,., 4+ C,., can be written in the form

E,, = C,, + C,, = m(C,A, + C,A,), (10.5)

where A, is a unit vector normal to C, and is therefore
spacelike, and m is an invariant.

It is seen that if (10.5) holds then (5.13) is satisfied,
and therefore the conditions (5.13) cover the null-null
case.

As before, we introduce vectors A,, B,, S,. A, is
already to hand in (10.5) as one member. B, and S,
may be obtained in terms of an arbitrary vector field
y, not normal to C,; thus

B* = (Cy) (— ) te*PA,Cpy,

§* = (Cy)'[y* — (y*A)A*
+ 3"C (Y A)® — ¥y ). (10.7)
We then have, as before,
A°B, = A*C, = B°C, = A"S, = B*S, = 0,
CC,=8S,=0, A*A,=B°B,=S°C,=1.
Equations (5.6) and (5.9) hold for these vectors. B,

and S, are arbitrary to the extent that they can be
replaced by

(10.6)

B,=B,+C,,

S, =S8, —rB, —{’C,,
where r is any invariant. Proceeding as before, we
find
C.,—C,..=NAB,—AB)+ p(CA,—CA)

+ o(C,B, — C,B,), (10.9)
(- g)‘%e“"”C,;,, = N(C*S' — C'S*) + p(C'B® — C'B")
— o(C*AY” — C’A¥). (10.10)
If we make a transformation of the form (10.8), we
find that ¢ is independent of the choice of B, , while
p transforms according to
p'=p+rN.
As before, we write
G,=A,cos0 + B,sinb6 + p,C,,
H,=B,cos 6 — A,sinb + p,C,,
and find that
6,=AB,, + oA, — pB, — INS, + wC,, (10.12)
where w is an undetermined invariant.

We are thus led to conditions which are formally
the same as in the general null case, but in.the present
case S, and B, are to some extent arbitrary, so that
it would appear that the conditions of integrability,
in the form (8.10), are of no real value.

However, by performing the transformations (10.8)
and (10.11), it can easily be seen that 6, given by

(10.8)

(10.11)
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(10.12) is independent of our choice of B,. That this
must be so can be seen from the fact that, by (8.1)
and (8.2), 6, depends only on the quantities

C*A* — C’'A* and C*B' — C'B,
which in this case are quite definite.

It follows that the values of 6 , given by (10.12)
and the integrability conditions (8.10), are indepen-
dent of the choice of B,, and therefore of S,. It ap-
pears necessary to introduce these quantities in order
to solve the equations and to express the necessary
conditions of integrability.

A specific example of the null-null case is given by
Witten® (see p. 395), from Peres.®

11. GRAVITATIONAL EQUATIONS

So far we have made no use of the relativity gravita-
tional equations which may be written

Ruv - %guvR - Aguv = _yT[lV’ (111)

where R, is the Ricci tensor derived from the Riemann

tensor [Ref. 4, Eq. (8.14)]. ¥ is a constant depending

on the units used, and 4 is the cosmological constant.

Contracting, we have in the present case, since
T =0,

R4+41=0, (11.2)
therefore
R, + Ag,, = —9T,,. (11.3)
Thus in the null case, by (2.3),
R, = —yC,C, — 1g,,. (11.4)

Differentiate (3.6) and we get, after re-arrangement,
CaCﬂRﬂuav + CaCu;V;a + Cuc?a;v
+ Gl + €Ll = 0.
Multiply by g+*, the first term vanishes by (11.4)
leaving

2C%Ch), + (C2)F + CACH = 0. (11.5)
By (7.5) this gives
N? = 8(C5)? + 4C*(Ch)... (11.6)

It follows that, when C® = 0 throughout any
domain, then N = 0. Hence in the null-null case, if
the gravitational equations are assumed to hold, N
is always zero. This makes no difference to the results
already obtained except that a few terms vanish.

12. SUMMARY

We first test whether T, can be the energy tensor
of a null, source-free, electromagnetic field.

Algebraic Conditions

T; =0,
T,..T; =0.
5 A. Peres, Phys. Rev. 118, 1105 (1960).

(1.6)
(2.2)
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If these hold we may write
T,=C,.C,.

This defines C,, which is a null vector.

(2.3)

Differential Conditions
Let

E,=C,,+C,, —2g,C%.

Then we must have
C.CE,, + C.CE,, = CCE, +CC,E,;,. (513)
These consist of five independent conditions. If these

conditions are satisfied, we can find the invariant, N,
defined by the equation

4.1)

NC* = (—g)temhC,C,... (7.1)

Case 1. When C% # O Over the Domain is Considered
If the conditions (5.13) are satisfied, we define a
vector R, by the equation

R,C,C, = C,E,, — C,E

ny u=ve T CvEua- (512), (515)

From R, we find
q = —R,R*12CF;,
S, = (R, + qC,)/6C:,.

S, is a null vector, depending only on C, and its
derivatives. $*C, = 1.

(5.16)

Case II. When C%, = 0 Qver the Domain is Considered

We may write

E,, = m(C,A, + CA), (10.5)

where A, is a unit spacelike vector. This determines
A, . The sign is immaterial.

We find two other vectors B, and S, by the method
of (10.6) and (10.7). These can perhaps be simplified
by a transformation of the form (10.8).

Cases I and 11

The following integrability conditions must now be
satisfied:

(Ca;usﬂ;v - Ca;vsﬂ:u + %Raﬁuv)(_g)—%eaﬂyecyse

— (=)0 (CS° + CPS* + C8P),

+ %(Nsu);v - %(Nsv);u = (ch);v - (ch);u-

(8.10)
These are effectively five conditions and an equation
to determine the invariant w.
Electromagnetic Field with Above Conditions Satisfied
Case I. When C% # 0

We choose two spacelike unit vectors A, and B,
normal to each other and normal to C, and S, . These

C. BARTRUM

can be found by the method of (5.8) and perhaps
simplified by a transformation of the form (5.7).

Case II. When C%, = 0
In this case A, and B, have already been determined.

Cases I and 11
0 is now determined to within a constant (and
sometimes more generally, depending on the deter-
mination of w) from the equation
6, = AB,, — (—2)10,,s,S°CH + INS, + wC,,
(8.9)
which is known to be integrable. The electromagnetic
field is then given by

f,, = (C,A, — C,A,) cos § + (C,B, — C,B,) sin 6.
(8.12)

The electromagnetic field is indeterminate to the
extent that 6 can always have an added constant
and in some cases may be even more general.

APPENDIX A

Let L) be any mixed tensor in four dimensions.
Then the determinant |L-}] is given by

24 |1y = LAy
= —6L2LLL + 8Ly
~ 6L, + 3L + (LD (A
Let the minor of L} in the determinant be |%. Then
we find

614, = S42LLLT — 3LALLE + (LY
— 6L LY + oL Ly
= LML — (LY°] (A2)
APPENDIX B

For formulas concerning the orthonormal tetrad,
see Eisenhart, Ref. 4, Chap. 3.
Denote the tetrad by 4,,,, i = 1, 2, 3, 4. 44, is the
timelike member of the tetrad.
h44 = _13
hy; =0 if i#j;
A I Aije = hizs Rihidiy = Buy-

hn = h22 = haa =1,

(B1)

The tetradic components of tensors T, and T, are
=14 |aTa’ ti; = A*A1PT . (B2)
Then
T, = hi 2,0,
u ia’ta/u. (B3)
Tuv = hiah:ib)‘a/;tzij.tij .

The summation convention holds for repeated Latin
suffixes.
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The general two-particle scattering amplitude is expanded in terms of partial waves corresponding
to the crossed channel little group, O(2, 1). Under the assumption of square integrability over the group
manifold, the invariance of the S matrix under the complex Lorentz group, which follows from the
Bargmann-Hall-Wightmann theorem, enables this expansion to be identified with the Regge representa-~
tion in the crossed channel, whenever no dynamical singularities occur to the right of Re j = —4. The
identification requires the assumption of the fixed ¢ dispersion relation necessary for the definition of

the Regge representation.

1. INTRODUCTION

UE to the crossing symmetry of the .S matrix the
two-particle scattering amplitude may be ex-
pressed in terms of two-particle helicity states which
correspond to one incoming and one outgoing
particle. The spacelike character of the total momen-
tum of such a state permits its expansion in terms of
eigenstates of the little group, O(2, 1), maintaining,
however, the reality of the masses of the component
single-particle states. This expansion in turn enables
the amplitude to be expanded in terms of the irre-
ducible unitary representations of O(2, 1), a subset of
which forms a complete set for the expansion of any
function which is square integrable over the group
manifold. The manner of making the expansion which
is adopted below is due to Dr. J. A. Strathdee, as is
also the tenor of the approach.

The invariance of the S matrix under the complex
Lorentz group enables this restricted expansion to be
identified with the Regge continuation of the crossed
channel O(3) partial-wave expansion, subject to the
condition that the partial-wave amplitudes have no
dynamical singularities to the right of Rej = —1.

The chief results are the identification of the
principal series of O(2, 1) representations with the
background integral of the Regge continuation, and
the discrete series with the nonsense channel terms,
which for O(2, 1) are perfectly natural contributions.

The major assumptions are the square integrability
of the amplitude over the group manifold and the
absence of dynamical singularities to the right of
Rej = —4% in the physical region of the s channel,
together with the fixed 7 dispersion relation necessary
for the definition of the Regge continuation of the
amplitude.

We have tried to alleviate the complication due to
spin and the presence of exchange forces by presenting
the essential framework of the paper in Sec. 2. A

* Permanent address: Imperial College, London, England.

summary of the crossed channel O(3) expansion in
Sec. 3 precedes the definition of O(2, 1) helicity states
in Sec. 4 and the expansion of the S matrix in terms of
them in Sec. 5. The analytic continuation in Sec. 6
enables its identification with the O(3) expansion of
Sec. 3.

This work may be regarded as the continuation of an
enquiry suggested by Joos! and is complementary to
recent works by Toller,2 Hadjioannou,? and Roffman.*
It draws heavily upon the properties of the repre-
sentations of SL(2, R) which have been established
by Andrews and Gunson.®

2. CENTER-OF-MASS AND BRICK-WALL
FRAMES

The invariance of the S matrix under the Poincaré
group & enables the scattering amplitude to be
expanded in terms of its unitary irreducible repre-
sentations. The usual partial-wave expansion is
based upon the representations of the little group
0(3), which corresponds to positive definite eigen-
values of the Casimir operator P2 of #. The general
two-particle transition amplitude

(Prhrs patal T(s, 1) |psls, pado),

for the process represented in Fig. 1, is expanded by
transforming to the center-of-mass frame, in which
(p, + po) is along the time axis; and by basing the
definition of the scattering amplitude on the single

particle helicity state
|pA) = U(Ly) |2), @n

where
p = m(cosh v, sinh y sin 6 cos ¢,
sinh y sin 8 sin ¢, sinh y cos §),
U(L,) = exp (—ipJyz) exp (—ibJ3) exp (—ipJos),

L H. Joos, in Lectures in Theoretical Physics (University of Colo-
rado, Boulder, 1964), Vol. 7A.

2 M. Toller, Nuovo Cimento 37, 631 (1965); Istituto di Fisica
“G. Marconi”, Note Interne 76 and 84.

3 F. T. Hadjioannou, Nuovo Cimento 44A, 185 (1966).

¢ E. H. Roffman, Phys. Rev. Letters 16, 210 (1966).

5 M. Andrews and J. Gunson, J. Math. Phys. §, 1391 (1964).
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FiG. 1. General two-particle
scattering.

and |A) corresponds to a single particle of mass m at
rest, having spin s with z component 4.

However, it is also possible to expand the amplitude
in terms of representations which are based on the
little group O(2, 1),® which corresponds to negative
definite eigenvalues of P2,

This is achieved by transforming to the brick-wall
frame, in which (p, — p,) is along the z axis, and by
basing the amplitude upon the helicity states [pa),
which are appropriate to the O(2, 1) group, these
being defined by

lpA)" = U(Ly) |A), 2.2
where

p = m(cosh « cosh B, cosh « sinh § cos ¢,

and cosh « sinh § sin ¢, sinh o)
U(L;) = exp (—idJ1o) exp (—ifJ ;) exp (—ioo3).

The significance of this definition is that J;, and Jy,
are both generators of the relevant O(2, 1) group.

Since L, and L, both transform the vector
b = (m, 0) into the same vector p it follows that

L) 'Lp=p
and consequently that S, = (L,)"'L,, is a pure O(3)
rotation.

Therefore, the O(3) and O(2, 1) helicity states may
be simply related by

P2y = 3 |pw)'{pl S, |4),
n

where the summation is over the states of the irre-
ducible representation of SU(2) which is characterized
by the spin s of the particle, and by using a specific
representation for the generators it may be shown that

S, = exp (—i®Jy),

2.3)

where
cos ® = cosh fcos 0
= sinh « cosh f{sinh? « cosh? § + sinh? g}~%.

8 The representations of SU(1, 1) are in (2, 1) correspondence with
the representation of O(2, 1), which is locally isomorphic to
SL(2, R). See A. Moussa and R. Stora, in Lectures in Theoretical
Physics (University of Colorado, Boulder, 1964), Vol. 7A.

J. F. BOYCE

Hence we may establish two equivalent representa-
tions for the general amplitude

{P1t1, Pahel T(s, ) |psds, psls)
= (pily, Padg| UHELDT(s, )U(L,) | pals, pata)
= (P1ly> Pohsl UH(L)T (s, t)U(L,) | pads, pale)s
2.9

where [, is the Lorentz transformation to the center-
of-mass frame, (p, + p.) along the time axis, and £,
is the transformation to the brick-wall frame, (p; — ps)
along the z axis. The subsequent expansions of the
amplitudes are in terms of the center-of-mass angle 6,
a function of the momentum transfer ¢, and a corre-
sponding hyperbolic angle 8, which is a function of s.

The individual vectors may be expressed as follows;
for the center-of-mass frame, denoting the vectors

by 4,

g, = my(cosh §,, sinh #,sin§, 0, sinh §, cos §),
g» = my(cosh §,, sinh $,sin B, 0, sinh %, cos §),
§a = mg(cosh 7, 0, 0, sinh 7, ),
§a = my(cosh 7,, 0, 0, sinh §, ),
.5
with
m, sinh ¥, + m, sinh §, = my sinh $3 + m,sinh $, = 0,
2.6)
while for the brick-wall frame
p1 = my(cosh o, cosh B, cosh oy sinh 8, 0, sinh «,),
Ps = my(cosh «,, 0, 0, sinh a,),
Pps = mg(cosh agcosh f, cosh agsinh 8, 0, sinh «,),
Ps = my(cosh oy, 0, 0, sinh a,),
@7
with

my cosh o, — mycosh ag = m, cosh a, — m,cosh oy = 0.
(2.8)
All of the components of the vectors are uniquely

determined by the values of s and 7. This enables the
angles to be interrelated by

O(s, 1) = iB(t, 5)

and
7108, 1) = (2, 5) — }im;
?/)3(& t) = OCz(t, S) - %l‘”’

Pals, 1) = a(t, 5) — dim;
5}4(59 t) = oc4(t, S) - %iﬂ,
(2.9)

where «(7, 5) means the value obtained from a(s, ¢) by
interchanging s and . These somewhat curious
relations are indicative of the nature of the O(2, 1)
expansion which, although performed in the physical
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region of the s channel, is essentially in terms of ¢
channel variables, viz., ¢ channel partial waves. Thus,
although «(s, t) is real for the physical region of the s
channel, a(¢, 5) is complex in this region. The relations
indicate that the O(2, 1) expansion is related to the
continuation of the O(3) expansion in the crossed
channel at values of the parameters which correspond
to the physical region of the direct channel. This, we
see below, is simply the Regge continuation by means
of the Sommerfeld-Watson transformation.

Since use has been made of the analyticity of the
S matrix in order to continue from one channel to
another it is not possible to connect the frames in
which the expansions are to be made by a real Lorentz
transformation. However, they may be related by a
complex Lorentz transformation, while the amplitudes
may be related by using the Bargmann-Hall-Wight-
mann theorem.”

The choice of variables appropriate to the center-of-
mass frame of the 7 channel, viz., (p, — ps) along the
t axis, is

¢q1 = —my(cosh y,, sinhy,sinf, 0, sinhy, cos ),
g = my(cosh y,, 0, 0, sinhy, )
gs = mg(coshys, sinhygsin®, O, sinh y4cos6),
qa = —my(cosh y,, 0, 0, sinhy, ),

(2.10)
with

m, sinh y; + mgsinh y; = m, sinhy, + mysinh y, = 0.
(2.11)

As might be anticipated, the Lorentz transformation
from the ¢ channel center-of-mass frame, (p; — ps)
along the ¢ axis, to the s channel brick-wall frame,
(p1 — ps) along the z axis, is that rotation which
transforms a unit vector along the time axis into a
unit vector along the z axis, while preserving its length.
This may be verified explicitly by using the identity
of s and ¢ for both frames to interrelate the angular
coordinates of the two systems, viz.,

B(s, 1) = i6(s, 1), (2.12)
ie.,
{=coshf=cosl =z
with
i, 1) = aufs, ) + dim; yuls, 1) = (s, 1) — bim;
YS(S’ t) = ax(s, t) — §im;  pas, 1) = a,(s, t) + %im,

7 R. F. Streaterand A. S. Wightmann, PCT, Spin and Statistics and .

all that (W. A. Benjamin Inc., New York, 1964), Theorem (2.11).
H. P. Stapp, Phys. Rev. 125, 2139 (1962); 1. J. Muzinich, J. Math.
Phys. 5, 1481 (1964). The same analysis applies to the crossing
relation between the s channel Breit frame and ¢ channel barycentric
frame as that between the s and ¢ channel barycentric frames
considered by Muzinich.
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and in consequence
P = Rg, (2.13)

where R = exp (§Jyy) is the required rotation, while
in addition

L, = RL; (2.14)
and

L,=RL,,
(p, q) denoting any corresponding pair of p;, " - -, p4;
91 P q4'

From the Bargmann-Hall-Wightmann theorem,’
given an amplitude which satisfies:

(1) Under the real Lorentz transformation A(4),
corresponding to the element 4 of SL(2, C), viz,
(4, A*) of SL(2, C) ® SL(2, C), the amplitude trans-
forms as

(PrA1s Pehal M(s, 8) |Pala, Pale)
t i
— t:D(le) (A)pﬂﬂ)(azo) (A)ﬁ:ﬂ)(s"°’(A)ﬁ§iD“‘°’(A)ﬁ:
X (Apypty , Apapa) M(s, 1) [Apspis, Apypy),

where D is a representation of SL(2, C).

(2) Holomorphic in the tube 7;eV*, where
pi=6&—mn;, j=1,---,4, and V, is the set of all
four vectors p which satisfy p* > 0, po > 0. Then the
amplitude has a single-valued analytic continuation
which transforms as above, but where A is now the
complex Lorentz transformation which corresponds
to the element (4, B) of SL(2, C) ® SL(2, C).

The above amplitude may be identified with the
M function which corresponds to the transition
amplitude under consideration. Explicitly

(PyAy, Pohsl M(s, 1) |Pahs, Pads) :
— ‘D(810)(Lp1)‘;-i®(S’O)(L»z)ﬁﬁ)(ssm (Lpa)iiﬂ)(“mf(l‘m)t:
X (pipt15 Paital T(s; 1) |Patts s Patte)-
This enables a single-valued analytic continuation of
the transition amplitude to be defined” which, under

the complex Lorentz transformation, A= R =
exp (§nJpg), transforms as

{D1A1s Patsl T(s, £) | Pas, Dah)
= D (WYD (W) 42D (Wa) D YW,

X {qupr, Qo] T(s, 1) |qspts, qapee), (2.15)
where
W, = (Lg-1,)*R'L, = (L)'R7'L,
= (L)L, =S,, (2.16)

and therefore may be identified with the spin rotation
which entered into the definition of the O(2,1)
helicity states, Eq. (2.3).

Hence the general amplitude may be transformed to
the s channel brick-wall system, (p, — p;) along the
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z axis, which may then either be expressed in terms of
0(2, 1) helicity states and expanded in terms of O(2, 1)
representations, or be subjected to the complex
rotation R = exp (}wJys) which transforms it to the
t channel center-of-mass system, (p, — p;) along the
t axis, and then expanded in terms of O(3) repre-
sentations, i.e., the amplitude in the brick-wall
frame is expressible as

(P11 s Pl T(s, 1) |Pads > Pala)

= (Al ST )X Aal ST |12 Pupts, Paptal T(s, 1) |pspis, papts)
X (psl SslAs)(tal Selde) (2.17)

= (Al ST |u2)(Ae| S3 | 12X qutts » Gattel T(s, 1) 19aits > Gapta)
X (ptal S3|Aa)tta] S51Ag), (2.18)

where, upon removing appropriate kinematical factors
N and N from the initial and final states,

Tzu(C’ t)= \<P1/11 s Paal T(s, 1) | pals ,P4l4>l [N*N']2
and

T2, 1) = (@1h15 Gohsl T(s, 1) I95ds s quA[N*N'T,
are expandable in terms of O(3) and O(2, 1) repre-
sentations, respectively.

The content of this paper is the formulation of
these two expansions and the proof that under
certain conditions one may be analytically con-
tinued into the other; it being most convenient to
continue the O(2,1) into the O(3). There are two
consequences. Firstly, we are able to identify the
principal and discrete series of the O(2, 1) repre-
sentation with the background integral and nonsense
channel terms, respectively, of the usual Regge
continuation, thereby indicating that from the view-
point of the O(2, 1) little group the nonsense channel
terms appear to be as valid as any other contribution.
Secondly, we find that we may base the analytic
continuation on that subset of irreducible unitary
representations of O(2,1) which appear in the
expansion of any function which is square integrable
over the group manifold, although an extension of
this set is indicated. In addition there is a suggestion
that the remaining irreducible unitary representations,
notably the supplementary series, which may all be
located to the left of Rej = —}, may also be useful
in a representation of the scattering amplitude.

The main points of the argument are as follows.
The definition of O(2, 1) helicity states enables the
amplitude T,,({,1), obtained from T,,({,t) by
crossing symmetry, to be expanded as

lul=
Tlp(g t) - —oz (2k + I)Tln(k t)d [((D
—$+i0

+L f 4i2j + DT, 0di (O, (2.19)
i—ioo
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where we have assumed 1 > |u] > 0, since the
symmetry of the representations enables the general
case to be expressed in terms of these. The expansion
coeflicients are

Tl t) = j AT 1) D),

TG 0 == [Catr g ne 0. @20
2i 1

The application of an inverse Sommerfeld-Watson
transformation to the principal series integral is
prevented by the well-known effect of the exchange
potential. We circumvent this by assuming the fixed ¢
dispersion relation®

T 0= ({ — l)m—")(l + 1)5(1+n)

2 2
d /P/w(g 1) ﬁl#(l t)
<[], B @ =27
(2.21)

which enables the amplitude to be expressed as the
sum of two terms which may be analytically continued
in j. In addition it enables the O(2, 1) expansion coeffi-
cients to be related to those of the O(3) expansion
via the lemma

C - %().—u) £+ 1 Rt ur(J A)
el}l(C)( ) ( 2 )
_sinm(j—2) f wdgl
« OBE = DEVPRE 4+ DS
r—1
1,
-3)

A —DBE =

1)]‘}(1—;:)[%(C/ + 1)]i(l+u)
-

s

(2.22)

which holds for Rej > M — 1, M = max (|4, lu]).
Upon deforming the principal series integral to the
right in the j plane it is found that kinematical
singularities of the integrand exist which give rise to
contributions which exactly cancel the discrete series
and reproduce the familiar O(3) expansion in the ¢
channel.

3. NORMAL ¢ CHANNEL PARTIAL-WAVE
EXPANSION

From crossing symmetry,® the transition amplitude
in the ¢ channel center-of-mass frame may be

8 F. Calogero, J. M. Charap, and E. J. Squires, Ann. Phys. (N.Y.)
25, 325 (1963).
¢ A. O. Barut, Phys. Rev. 130, 436 (1963).
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expressed as

(@121, 42ol T(s,0) 9323, g}

= ﬁ)sl(c)‘ﬁﬂ)s‘(c—l)ﬁ: (= Qatta s Gahsl T(s,0)1q34s, —qyfty)
= N*N'DHORDHC T (2, 1), 3.1n
where by the normal partial-wave decomposition in
terms of helicity states!?

TAM(Z’ t) = —EJM(ZJ + I)Tlu(j’ 1‘) dﬁn(COS 9)’ (32)
in which
3.=}»2—l4, ,u=,3,3—)»1, M=maX(Ml, ‘#D
and

N = {4n(m, sinh y7)(m, cosh 3 + m, cosh yl)}%
while

Tuh 0 =4[ dT G0 do. )

The definition of the angular coordinate system,
Eq. (2.10), enables the identification

z = cos
~2t(s — m? — m3)
_ — (t + mi — m3)t + mj — mp)
[{t —(my — ms)a}{t — (my + ma)z}
X {t = (my — m)*}Ht — (my + mp)’}]

3.4

The amplitude is expressed in a j plane analytically

continuable form® by using the dispersion relation,

Eq. (2.21) to express

T)ﬂ(z, t) = A;_F‘(Z, t) — ei”BA,_ﬁ(—Z, 1)
when

Tlp(j’ t) = ‘4_2.;:(}.3 t) - eiﬂjEi-p(j’ t),

3.5)

where
A‘ln(ja t) =f dz’ﬁlu(z,a t)
E7:3

v \Haw Fkw)
Y e

2 2
(3.6)

and

®
B).—-u(j, t) = _f dz'ﬁf;.(-—z’, t)
73

r__ %U.—hu) ’ %(A——#) .
y (z 1) (z + 1) (.

2 2
3.7

The expansions of 4,,(z, ¢) and B, (z, t) are amenable

12 M. Jacob and G. C. Wick, Ann. Phys. (N.Y.} 7, 404 (1959);
G. C. Wick, #hid. 18, 65 (1962); L. Durand, P. C. de Celles, and R,
B. Marr, Phys. Rev. 126, 1882 (1962).
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to the Sommerfeld—-Watson transformation for z > 0)
and hence define an analytic continuation of T},(z, 1)
in the j plane, whose uniqueness follows from Carl-
son’s theorem. In terms of them,

o0

Tz, 1) =,§M(2j + DI4,,(J, 1) — €"B,_,(j, D]d}(2).
(3.8)

4. THE DEFINITION OF 0(2,1) HELICITY
STATES

We proceed by analogy with the normal O(3)
development.’ The single-particle states are defined
by Eq. (2.2). The general two-particle state is defined
by

1P1d1s — pola) = [pidy) @ [—ps — A,
where, if (p; — p,) is purely along the z axis
pr=p=9; bh=p=4;
m; cosh «, — my cosh oy = 0,
and hence
|Pidss — pahs) = exp (—igJyp) exp (—ifJy)
X {exp (—iuyJos) |2;) ® exp (—ivgog) | —A2)}
= N exp (—iglyy) exp (—ifor) [«; Lids), (4.2)
where |—A,) means |(—m,, 0), —A4,) while
P, la; Ay =0 (x=0,1,2),
Pyla; Aidy)" = a|a; 3112»2)"
and hence may be expanded in terms of the bases of
irreducible representations of O(2, 1),** as

lo; Ad) =D N(g, m) |o; Aydg; gm)’
=ZN(‘1) foo; Adgs gm = Ay — Ap)"  (4.3)
q

4.1)

since

izl LAY = (A — 4y) |a; M)

The representation of O(2, 1) may be characterized
by g and the individual basis vectors by m, where

(i = Jor — Jo) 1g, mY = q(g + 1) g, m),
Jialg, m)' = m g, my.
As g assumes discrete, integral or half-integral, and
continuous values, > signifies both summation and
integration.

The elements U of O(2, 1) may be parametrized by
(@, B, v), defined analogously to the Euler angles by
Ulp, B, y) = exp (—ipJyy) exp (—ifJyy) exp (—iyJyp)

0<gy<2r, ~—0<Lf<L .

11V, Bargmann, Ann. Math. 48, 568 (1947); A. O. Barut and
C. Fronsdal, Proc. Roy. Soc. (London} A287, 532 (1965); L. C.
Biedenharn, J. Nuyts, and N. Straumann, CERN Preprint 65/76115-
TH. 555; F. R. Halpern and E. Branscomb, UCRL (Livermore)-
1235 Rev. 1, & Errata.
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Under the transformation characterized by (¢, §, %)

lq: m>' g U(‘Ps ﬂ’ V)) Iq’ m>' = z, IQa m,yﬂ)gn‘m((p’ ﬁ’ 'P)s
where

Do ®s B, 9) = exp(—im@) d7,(cosh f)exp(—im'y)
and 4% .(cosh f) is the analytic continuation of
d? . (cos ), this being defined by its expression in
terms of hypergeometric functions.> Hence the two-
particle state may be expanded as

[P14s, — pole)’
= N3 N(q) |o; hads; gm)DF5, 1,9, B, 0).
@ 4.4
The usual normalization of two-particle states
AH(p)AH(—po)(prhy, — pala | patas — Pahe)
= (2m)*6%(p, — pa)d*(p2 — Pi)élllaai.glda
where
A¥(p) = 276(p* — m*)0(po) = 2md(p* — m*)0(p,)
implies
(2m)*A(p)AH(—py) \<P121 s — Paho lPslaa - P4}~4>/
= 04(p1 — ps3)0%(p; — JALIRRIWY
= v (ps + pa — Ps — pIO(p1, — uy)
X 8(py, — uz)d(cosh f — cosh B)o(p — ¢')0, 1.0, 4,5
(4.5)
where
u, = my sinh o;; 4, = m, sinh a,,

¥ = m, cosh oy}

p=m cosh a,(m, sinh «; — m, sinh «,)
my sinh «, m, sinh o,
the variables being with respect to the frame in which
(p1 — p») is purely along the z axis, primed and
unprimed indices referring to final and initial states.
Hence the normalization of Eq. (4.2) by

N = (4mv2u uu,)},

which may be identified with the O(3) normalization,
yields

‘”A+(P1)A+(P2)63(171 + pa— Ps — Pa)
X z \<°C; MAs; qm l o Ashe; qlm'>/
a,q
t .
X D _13m(®s B, 00D, 5,2(9', B’ ON*(9)N(q")
= 8(py, — u)0(ps, — u2)0"(py + P2 — Ps — Py
X 6(COSh ﬂ - COSh ﬂ’)6(¢ - (p,)allla6122‘(2")8(4141“2)-1’

where

l3 = (P05P19P2) (46)

J. F. BOYCE

and the orthogonality relations
\<°ﬁ; MqAs; qm | o'; Ashe; ‘I’m'>/

=270 — a’)alllaadﬂ.‘aaa’émm’ 4.7

imply
N(g) = (29 + D}

(4.8)
since
1> (2q + 1) df;(cosh f) df;(cosh §')

= d(cosh § — cosh §’). (4.9)

5. O(z,1) DECOMPOSITION IN THE
s CHANNEL
In the s channel brick-wall frame, (p; — ps) along
the z axis, the specification of the angular coordinates,
Eq. (2.7) permits the identification

{=cosh p
—2t(s — mi — md) :
|: —(t+mf—m§)(t+m§—m§)}
l:[{t —(m; — ms)z}{t —(my + ms)z} ],
x {t — (my — m)*}{t — (my + m4)2}]%
(5.1)

which may be compared with Eq. (3.4), it following
that z = {; however, for clarity, we maintain them
as distinct variables. Crossing symmetry, which takes
the same form for the amplitude defined in terms of
0(2, 1) helicity states as for the normal definition,
may be utilized to express the O(2,1) helicity
amplitude in the s channel brick-wall frame as

\<P1}~1: Pelyl T(s, 1) |psds, P4A4>/
= DYOPDYC e
X \("Pd‘-u Dalal T(s, t) |pals, "Pl/‘l)l,
(5.2)
where
|Pats, —P1}~1>’ = €Xp (—iBJo)
X {exp (—iag/os) [A3) ® exp (—ixJos) | — A1)}
= N exp (—ifJo) |2 A3dy),
while
v I_P4A4’P2/12>’ = N |a; A445)
and hence
K—Daha> Podal T(s, 1) Ipady, —pida)
= N*N' Y \(oc; Adhgs gm| T(s, 1) |o; gy q'm'>/

2,0’
m,m’

;
But X D 25-24(0, 0, 0D, 2,2, (0, B, O)N*(9)N(q').
u

[sz - J?u - ng, T] = [le, T] =0
enables the definition
Vs Aghys gml T(s, 2) o3 Aghy; g'my!
= Oy Bmm Auel T(a, ) 14321 (5.3)
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Supplementary Series ¥
Principal Series

Discrete Series

O RN

\ i 2

Trivial Representation

Fi1G. 2. Single-valued representations of O(2, 1).

to be made, in terms of which
X—Ppahs, Pods] TS, 1) |pals, —py—Ay)
=Y (29 + 1) (A4hy] T(g, 1) |44y’ dd,(cosh B)N*N
Q
A=ldy— Ay p=24—1;
ie.,
\<P1}*1 » D2As| T(s, 1) | pads, P4}~4>/
' = DYCOYDYCYT, (L, HN*N,
A=y —py, p=72—p, (54)
where

T80 =3 @2q + DT, (g, H) d5.(),

Q

(5.5

which may be identified as the expansion formula of
the O(2, 1) group, Eq. (2.19), which we now consider
in more detail.

Just as in the O(3) expansion, the representations
of SU(2) are required to form a complete set, so the
representations of the corresponding spinor group
SU(1, 1) are needed in the O(2, 1) analysis. These
have been established by a number of authors.!* We
make use of the formulation of Barut and Fronsdal,
replacing, however, ® by (—j— 1); for, as the
representations corresponding to ® and (—® — 1)
are equivalent, we are at liberty to do this. Upon
denoting each irreducible unitary representation by a
point in the complex j plane, the single- and double-
valued representations may be exhibited as shown in
Figs. 2 and 3. They may be identified in the usual way
as

Principal series

Jj=—t+io —w Lo o,
Eigenvalue of J;, = 0, £1,- - single valued
=44, £, --- double valued.

Supplementary series
-1<j< -4
Eigenvalue of J;, =0, +1,- - single valued.

Positive discrete series, D+

EXPANSION 681
rincipal Series .
/ kg
Discrete Series
2)
g o \
L I L 3 5
2 2 2 2

F1G. 3. Double-valued representations of 0(2, 1).

j=0, 1,2,---
=_%,%’%"'.
Eigenvalue of Jiy =j + 1,7 + 2, - .

single valued
double valued.

Negative discrete series, D~
j=012---
= _%s %’ %’ :

Eigenvalue of Jip = —j — 1, —j — 2, -+ -,

single valued
double valued.

Trivial representation
j=—-L
Eigenvalue of Jy, = 0.

The analog of the Peter-Weyl theorem, Theorem 9
of Bargmann, states that any function which is
square integrable over the group manifold may be
expanded in terms of the principal series and those
members of the discrete series having j > —4. The
virtue of our choice of representation parameter now
becomes clear, for as far as square integrable functions
are concerned we may discard the representations
lying to the left of Re j= —}, viz.,, the supple-
mentary series, the trivial representation and D®)(—3).
The principal series and the remaining members of the
discrete series may be identified with the background
integral and nonsense channel terms, respectively, this
identification being validated by the next section.

6. ANALYTIC CONTINUATION OF THE
0(2,1) DECOMPOSITION

The set of irreducible unitary representations of
0(2, 1) which occur in the expansion of any square
integrable function is just that set of kinematical terms
which are obtained by the O(3) channel expansion;
the principal and discrete series being simply the
background integral and nonsense channel contri-
butions. It is most convenient to show the inverse,
i.e., to express the amplitude in a form which permits
an inverse Sommerfeld—Watson transformation to be
performed, the result of which may be identified with
the O(3) series. In order to do this we must, in addition,
continue in { to |{] < 1. Two distinct difficulties arise.
The principal series of the O(2, 1) expansion diverges
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if |{] < 1. This can be overcome by using the disper-
sion relation (2.21) to consider direct and exchange
forces independently ; which simply corresponds to the
introduction of signature. Even so, the partial-wave
amplitude diverges as Re j — oo, unless we utilize the
invariance of the principal series integral under
Jj—> =+ 1) to redefine T,,(j,¢) in such a manner
that it is bounded as Re j— c0. As will emerge, the
natural way of doing this leads to an amplitude which
has poles at integer values of (j — 1), whose residues
are identical with the crossed channel O(3) partial-
wave amplitudes. When these poles are crossed by
shifting the principal series integral to the right, they
give rise to a set of terms which cancels the discrete
series and reproduces the familiar O(3) expansion of
the crossed channel. In this section, since we are
concerned with kinematic singularities, we assume
that the partial-wave amplitudes have no dynamical
singularities for Rej > —%; a discussion of the
validity of this assumption is postponed until the next
section.

We begin by using Eq. (2.21) to divide the amplitude
into direct and exchange components

To¢.n= (%)éu—m (_{_;;_1)5‘““’ f: i FE(L, 1)

r-v
(6.1)
—url g_ i(l—u) C_}_ 1 %(/H—u)
g -en(5) Y
[ ar P‘C",(Z ? . (6.2)
in terms of which ’
TA»(C, t) = T}?J(C’ t) - eiﬂfo—u(_C’ t)~ (63)

The anti-symmetry of the principal series integral
under j — —(j + 1) enables it to be replaced by

Lo @41
4o sin a(j — A)
X [#:,07, ) — B, _(j, D1diD), (6.4)
where

&y ) = 7 sin w(j — 4) f " ael (OTBW, 1)
je f d di_(~OTR(L D, (65)
Bi(st) = = lsin a(j — l)e"”‘fl dle, (D)

x TE (~ Ct)—%f dL di_(—OTE (~L, ).
(6.6)
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It follows from the asymptotic behavior®

5D = 007" as (6.7)
that the existence of .77&,1”( j,t) and ﬁz—u( j, t) for
Rej = —3} implies their existence for all j such that
Re j > —}. The significance of Eqgs. (6.5) and (6.6)
is that for Re j sufficiently large we may substitute for
TP(L 1) and TY_ (—{, 1) using Eqs. (6.1) and (6.2),
invert the orders of integration, and use Eq. (2.22),
which is proven in the Appendix to show that

Elu(j, t) = -'e_i”u*l)/{/lu(ja t)a (68)

By, ) = —€™B,_(j, 1), (6.9)
where 4,,(j,t) and B, _,(j,t) are the crossed channel
O(3) amplitudes defined by (3.6) and (3.7). If

B3 O, 1B, O < 0L,

then the above equations are valid for Rej > M — «,
where

[{] = oo

M = max (|4], |ul).

Due to the j plane asymptotic behavior®

el = i exp [(j + 3) log {L — (& — DY,
as [j| = oco. (6.10)

It follows that A4,,(j,) and B,,(j, t) are bounded by
|jI* as Rej-» oo, which is not the case for the
original O(2, 1) partial waves, unmodified by the terms
which are symmetric under j — —(j + 1).

The expansion is not yet in a form which may be
continued in { to |{| < 1, since it still contains the
signature factors. However, before removing these, it
is convenient to show the cancellation of the discrete
series. To do this we transform the principal series
integrals from Rej= —} to Rej= M — 1, while
utilizing the symmetry of dj ({) to restrict attention to
the cases 4 > |u| > 0.

The integrand consists of an entire function of j
times the factor

T TUGH+A+DIG—p+ 1)
sina(j—2) T(G—A4+DIG+u+1)
=m'(j+,u+1)”‘(j+ﬂ)
X(G=D (=240, A2a20
————“(J+/1) J—24+D
sin 7(j — 4)
X(G—@w (+pu+1), A>2—-u>0.
(6.11)

When 4 > ¢ > 0 poles occur from j =0 or } up
to u — 1 and from A to oo, while for A > —u >0
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they occur only from A to co. This is in agreement
with the occurrence of discrete O(2, 1) representations,
as these do not contribute to amplitudes for which

Au < 0.
The residue of the integrand at these poles is

(4mi)y Y2 + 1)[ f “aL di (DT 9
_ g f “dL AL (OTE (L, t)}

and hence their contribution to the amplitude is

—on) 3 0k + D[ " O @ 0] a0,
(6.12)

which exactly cancels the contribution from the
discrete series.

Assuming that .f_klu(j, t) and ‘75,1”(]', t) have no
dynamical singularities to the right of Rej= —1,
the O(2, 1) expansion becomes

PCES)
sin w(j — 4)

_ M-}+ic 1
T;(L 0 = $i "
M—%—-ico

X [e7A,,(j, 1) — B;_(j, D1 di(0), (6.13)
where 4,,(j,t) and B, _,(j, t) are the crossed channel
O(3) amplitudes. Although these are bounded by
|j|—*5 as | j| — oo, since for { > 1
&)~ 1jlPexp (B Re j), asRej— oo, { = cosh ,

<,
while for |{] < 1
a0 <1,

~1jlI " exp (19 Im j|), asImj— oo, { = cos 6,

asIm j — oo,

as Rej— o,

we must continue Eq. (6.13) to |{] < 1 before allowing
Re j to become infinite. This continuation is prevented
by the signature factor e~**/, which may be removed
by using®

e g3 () = dj_(~0) + 277 sin w(j — el (D)
(6.14)

and noticing that in the absence of dynamical singu-
larities in the right-hand plane

M—}+iw X _
f i + Db, ) =0, (6.15)

M—$—iw
which enables the amplitude to be expressed as
. . @+
Ty =4if g LEED
awlle D =i M-d-i = sin 7w(j — A)
X [0, ) d5 (=0 — 7B, _,(j, ) d] (D},
(6.16)

M—}+io
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if we now continue this amplitude in { to |{| < 1 and
then perform an inverse Sommerfeld—Watson trans-
form, the resulting expression is

Tl =3 @) + 1)
X (s 1) = €98, (. 0] diy(0),

which may be identified with the O(3) expansion Eq.
(3.8).

7. CONCLUSION

Whenever the amplitudes fkh‘( j»t) and 35,1”( s 1),
defined by Egs. (6.5) and (6.6) exist and have no
dynamical singularities to the right of Re j = —} then
the O(2, 1) partial-wave expansion may be identified
with the Regge continuation of the crossed channel
amplitude. Their existence follows directly from the
assumption of square integrability over the group
manifold. However, due to the integration with
respect to cosh § being over an infinite interval,
1 <coshfB < oo, the general amplitude is not
square integrable.

For the scattering of spinless particles the Martin—
Froissart bound*?

[T(s,2)] < Ks(lns)®? as s—> 00,1 <0

enables &,,(j, 1) B,,(j,1), to be defined by their
analytic continuations from Rej > 1. The amplitude
defined by Eq. (6.16) may now differ from the physical
amplitude, but upon performing an inverse Sommer-
feld-Watson transformation on it as in Sec. 6 the
result agrees with the analytically continuable O(3)
partial-wave amplitude which itself may differ from
the physical amplitude by just those terms dj (2),
j =0, 4, 1, which correspond to the possible existence
of elementary particles having spins 0, }, or 1.

On the basis of analogy with potential theory we
may expect that all Regge poles are to the left of
Re j = —} for sufficiently large negative ¢. In such
circumstances, if we ignore the possibility of ele-
mentary particles, the representation of the amplitude
may be identified with the O(2,1) expansion of a
square integrable function. As ¢ increases to positive
values, singularities may penetrate the contour. We
may infer that they are caused by the amplitude
becoming nonsquare integrable.
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APPENDIX

The proof of Eq. (2.22), which is simply the gener-
alization of the well-known relation between the
Legendre polynomials of the first and second kinds,
follows from the fact that

el (DI — DR + DJEcw

is an analytic function of { in the plane cut from 1 to
— o0, with discontinuity given by®
Disc [e] (DI} — DR + DEG)

= —im d}, (OB — DI + Do

(-1~
= 2i sin w(j — Nel_,(—0)

X [M¢ — DFUPRE + DR (¢ < —1).

J. F. BOYCE

In addition, since
e (O =007 as [{|— oo,

" ’ Yo g LIP )
. -1 u 1 Y
de IC' ewei,,(c )( ) (Z + )
—7t+e€ 2 2

T—E lg/'—Re +M
—rve U=

and hence —0 as |{'|—> o for Rej> M — 1.
Therefore, if { is any point not on the real axis < 1,
and C is a finite circle, center { and radius < |{ — 1],
then by Cauchy’s integral theorem

T—

i -1 ba-w e 4 B
qu) (7ﬂ

= _I_J‘ dﬁ’ eiu(l’)[%(gl - 1)]5(’1_“’[12-(? + 1)]%(;.+u)
27Tl ¢ Cl —C

=1 1d§l di (R — 1)]*““"’[5((' + e

2J) .

+ sin 7(j — A)
N _ldg' el (=L — 21)]*“;)[%@' + D

for Rej > M — 1, from which Eq. (2.22) follows.
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Tensor Operators and Mass Formula in the Minimal
Extension of U; by Charge Conjugation*

A. O. BaruT AND H. KLEINERT
Department of Physics, University of Colorado, Boulder, Colorado

(Received 19 September 1966)

The transformation property of the mass (or mass square) M is specified in the extended group. The
most general mass formula, M = M, + a()[I(I + 1) — }Y? — K(@)] + b,(@)NY + by(x)Q, 7Y, is de-
rived where a€x), b(«), K(«) are constants depending on a charge-even set «, specified in the text, and

Q. is the second invariant operator of SU,.

HE Gell-Mann-Okubo mass formula, M = M, +

alllI +1) — }Y?* + bY, is incomplete in the
sense that it does not reflect, as it stands, the charge
conjugation properties of the mass splitting. Thus, the
last term should have opposite signs for baryons and
antibaryons and should vanish for mesons. Therefore,
the baryon number and charge conjugation parities
must enter into the formula as well. In order to modify
the form of the equation, we start from the invariance
group & = {Us, coset U3C}, which is the minimal
extension! of Uy by charge conjugation C.2

I. THE STATES

The states of irreducible representations of U, are
labeled by |N, Qs, Qs 1, I, Y), where @, and Q, are
the two invariant (Casimir) operators of SU, . Note that
0, and Q, are chosen to be the components of the
maximal weight of the representation:

p—q
= + q), = Se——=
A=ip+4q, Q > \/3
Since CpC = q and CqC = p, we find CQ,C = @,,
CQ.C = —Q,. Also, CNC = —N. The quadratic
Casimir operator is

8
gﬁ=%Mp+D+q@+$+mﬂ

The charge conjugation C can be adjoined to the
representations of Uj in two possible ways: either the

* This work was supported by the United States Air Force Office
of Scientific Research under Grant AF-AFOSR-30-65.

1The concept of minimal extension of a group by a discrete
operation is discussed in detail in the articles by E. P. Wigner and
L. Michel, in Group Theoretical Concepts and Methods in Elementary
Particle Physics, F. Giirsey, Ed. (Gordon and Breach Science
Publishers, Inc., New York, 1964); T. D. Lee and G. C. Wick, Phys.
Rev. 148, 1385 (1966).

2 Mathematically the charge conjugation C defines an auto-
morphism of U, and this automorphism characterizes the minimal
extension. L. C. Biedenharn, J. Nuyts, and H. Ruegg, CERN
preprint (1965); S. Okubo and N. Mukunda, Ann. Phys. (N.Y.) 36,
311 (1966). Depending on whether the representation of the auto-
morphism is inner or outer, one gets the two cases of doubling or no
doubling of states discussed below.

states C|) are unrelated to the original states, then
the extended group & = {U,, U,C} is represented in

b
the Hilbert space {CD} of doubled states; or the

states C|) are linearly related to the states |), then we
can form the combinations (2)~3[|) & C|)] with def-
inite C-parities 7, which are denoted by

l"]c;N’ Ql, Qz;la L, Y), Ne = +1. (1)

This second case occurs only if the invariant operators
of U, are also invariant under C, that is, if N =0,
Q. = 0 in our choice of the Casimir operators (see
note above) (i.e., self-adjoint representations of Uj).

II. THE INVARITANTS

The invariant operators out of which the most
general invariant function is constructed is different in
both cases. In the first case, where the states are
doubled, the two representations of U, with +N,
+Q, are the same irreducible representation of the
extended group & characterized by N2, Q2. Thus, due
to the additional requirement

Cf(N’ Ql ) QZ)C_I =f(N, Ql ] Q2)s (2)
all invariants are functions of only
N®% Qy, NQ,, and Q: (3

The operator NQ, fixes the relative sign between N
and Q, to distinguish, for example, between

10, N=1 i0,N=1
— and ;
10, N = —1 10, N = —1

only the first case is known to be realized for the 3+
baryons.

In the second case the invariants are functions of 7,
and @, . Thus we can write in both cases the invari-
ants as functions of the set

« = {ncaN,O’ Ng, Qly NQZ’ 2} (4)
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III. THE TENSOR OPERATORS

The general tensor operator is first constructed for
the group U, in the usual way from the infinitesimal
generators F;, i =0, 1, - - -, 8 in the form

Ti =4+ tiij + tiilcFiFk 4., (5)

where #, _, are all possible invariant symmetric ten-
sors of the adjoint representation of Uy. This follows
from

Utijk R Fij « o U—l

=ty F,AdU F, AdUy, =t., - F;F,AdU,,.
Hence

Adel’.AdUkrkAdU., 'ti'j'k' = tiik .

Applying this to Ty, for example, one gets
Ty=alll+ 1) — 1Y? — K] + bY, (6)

where a, b, K are functions of the Ug-invariants N,
01, O,. The constant K has the effect of making the
average of Ty over a multiplet vanish and is given by

®

K=3YFi=3pp+3)+ag+3)+pal ()

=1

[

Then we impose the condition of charge invariance

CT,.C1=T,. (8)

A. O. BARUT AND H. KLEINERT

1IV. THE MASS FORMULA

We require that the mass splitting be invariant under
C in addition to the Ty-property, i.e.,

CT,C = T. ©9)

(Note that CF,C~' = —F;!) The condition (9) re-
stricts the coefficient a in Eq. (6) to be a function
only of the set «, Eq. (4); K remains the same because
CKC™ = K, while b has to be the most general odd
function under C, hence

= bj()N + by()Q,.

Therefore, the most general mass formula in & =
{Us;, U3C} under the stated assumptions is

M = M, + a()[I(I + 1) — 1Y* - K]
+ bi()NY + by(0)Q,Y. (10)
V. OTHER CONCLUSIONS

(i) Because the group SU, for n > 3 has only one
outer automorphism, we do not expect any further
extension of the internal symmetry group except the
one discussed.

(ii) In the case of N =0, only one value of %, is
known at present. Because the coefficients in the mass
formula (10) depend on 7, the states with n, = —1
could lie higher.

(iii) Note the presence of the term b,0Q,Y in Eq. (10)
which distinguishes, for example, the N =1 octet
and decouplet even if the coefficients a,b(«) are the
same for these two multiplets.
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(Received 2 September 1966)

The relativistic phase-space integral over the submanifold defined by total momentum zero and fixed
total energy is reduced to a single contour integration. The number of particles involved and their masses
are arbitrary. It is shown that the contour integration may be readily approximated by the saddle-point
technique and yields a result which is easily handled by a computer. In the nonrelativistic and extreme
relativistic limits, this method leads to expressions for the phase space which may be obtained from the
exact results for these cases by replacing I'-function factors by the Stirling approximation.

I. INTRODUCTION

NTEREST in the evaluation of phase-space integrals
involving the constraints of momentum and energy
conservation arises from the study of multiple pro-
duction of particles in high-energy nuclear collisions.
A knowledge of the phase-space factor for a particular
process allows the separation of the dynamical and
kinematical features peculiar to the situation. For
example, a knowledge of phase-space factors can be
important for the determination of whether very-
short-lived particles or “resonances” play a role in a
particular reaction.
It has been shown that the general relativistic
phase-space integrals are easily reduced to two inte-
grations.! This paper shows how still another integra-

tion may be performed.

II. REDUCTION OF THE INTEGRAL

The integral to be evaluated is (using units in which

c=1)
$.(E) = ja( )a(zp.)II‘“" %)

where w, = (p} + mf)ﬁ. This is a Lorentz-invariant
quantity which we evaluate in the center-of-momentum
frame. If we insert a Fourier representation of the
function we may write

w—i€

5.8) = f_w_“dae

where

ioB J PATL I % m), ()
i=1

JOA, 0, m) = f 4:—)’3 exp[ih-p—aw)l.  (3)

The variable « has been given a small negative
imaginary part to make the integration over momenta
well defined. After the trivial angular integrations

* This work was done under the auspices of the U.S. Atomic
Energy Commission.
V. Lepore and R. N. Stuart, Phys. Rev. 94, 1724 (1954).

are performed we can write

JA, o, m) = —Qn[A)d[dDI(A, «, m), C)]
where
10, @, m) = f " AP tireo, )
—w W
If we now let
p = msinh 6,
w = mcosh 6,
a = (a2 — A%} cosh v,
A= (a2 — A%} sinh vy,
then?
I, o, m) =f df exp [—im(a® — 12)% cosh (6 — )]
(6)
= —inH®[m(® — 2. (N
Therefore
J(2, 0, m) = 27tim(a® — 2 P H®m( — 13}, ®)

SAE) = - j " f "R dieEf (@ — Y, 9)
where

f@ =TI [M H‘ﬁ’(mkz)]. (10)

k=1

The sole role of ¢ in this equation is to define the
continuation of the square root. If we had carried the
analysis to this point using an arbitrary Lorentz frame,
this expression would be a Fourier transformation in
a space with a timelike dimension. Thus the following
steps seem to be a generalization of a theorem of
Bochner’s on Fourier transformations of radial
functions.®

We now replace the « integration by an integration
over p = (a? — A®)}. This necessitates a separate

2 G. N. Watson, Theory of Bessel Functions (The Macmillan
Company, New York, 1948), 2nd ed., p. 180.

3S. Bochner and K. Chandrasekharan, Fourier Transforms
(Princeton University Press, Princeton, New Jersey, 1949), p. 69.
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Fic. 1. Integration contour in
the o plane for A < R.

H p plane

FiG. 2. Integration contour in the p plane
for A < R.

il a ptone
4

Fi1G. 3. Integration contour in the «
plane for A > R.

p plane

FiG. 4. Integration contour in the p plane
for A > R.

consideration of different domains of integration. We
write

R ©
S,,(E)=4—1;{ f di| da+ f di f da}
mT\Jo o) R Ca

x A% Ef[(a® — A, (11)

In the first integral in Eq. (11), 4 < R. In this case, we
first distort the original « contour so that it follows
the real axis except for an arc below the singular
points at 44 (see Fig. 1). For the variable p, there is
a corresponding contour traced out in the p plane
as « follows its contour (see Fig. 2). For convenience,
we choose the arc in the p plane as a half circle of
radius R, so the « traces out an arc which is similar
to an ellipse. In the second integral, A > R, the
o contour is distorted to follow the real axis
except for separate arcs under the singularities at
o = A (see Fig. 3). As before, we have a corre-
sponding path in p and we choose the nonstraight
portions to be circles of radius R (see Fig. 4).t We

4 In Figs. 3 and 4 the contours are shown displaced from the cuts
for clarity, although in fact they are to be taken on the cuts.
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denote the contributions to .S, from the various pieces
of the « contours simply by the labels as indicated in
Figs. 1-4. The integrals can now all be expressed in
terms of a real independent variable, but we must
treat each one separately, taking into account the
analytic continuation in the appropriately cut plane
for the various functions involved.

Let us consider, for example, the calculation of .Sy:

1 ) —(12+R2)% . 3
S = f di f dad® Ff[(a® — Y (12)
47° Jr -

o]

If we now choose p as the integration variable, and
introduce the variable r, using

p=(a*— i} = —r, for r>0,
13)
a=(p+ 2t = —(*+ M),

we have
1 © —-R . t
S = — —_"f dlf dpp*(A2 + r*y
477 R —o0

x exp [—IiE(R + ) f(p). (14)

The phase of p is —a. If we now make the same change
of variable in §;, interchange order of integration in
both §; and §;, and add the two, we have, in terms
of the variable u = |(A/r)? + 1|3,

—-R w0

Se+ 8t = 15 [ dofon [ dutut — e
47 — 1

1s)

We must now face the problem, which we ignored
above, that the u integration is divergent. However,
it is a limiting case of a convergent integral, namely
that in which r has a negative imaginary part. This
is because we are dealing with generalized functions
[recall the Fourier representation for the é function
introduced into Eq. (2)]. We define this function and
others to follow as the limit of the generalized
function as parameters approach their final value
through values which make the integral convergent.
These statements applied here to the u integration
actually refer to the method by which the original
4 function was represented. With this intepretation
we now have®

Si+ 8 = (l) f _def(p)pa[—i1 H(”(Er):l. (16)

R VO 26r '

5 Reference 2, p. 167.
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An exactly analogous calculation, this time using
p=(oc2-—l2)%==r, for r> 0,

an
a=(p*+ 1 = (A + r2)}
yields®
1 L — i
Siv+8u={—=]{ 4 3-———11‘“5].
w + o (47?3) fR pfpp [ZEI‘ 1 (Er)

(18)

Similar calculations using

p=(a2— At = —ir, for r>0,

(19)

a=(p* + )t = F(2 — )}

(minus sign for Sy, plus for Sypp), followed by the
introduction of the variable u = |(A/r)2 — 1|}, give

1 —10
Sy = —;

[ v [ dur + e
47° J-in 0

(20)
S = ._1__. _iRd f( ) 3 ood 2 + 1 ik
b 3 pf(p)p” | du(u® + 1)%e "™
47° J-ico 0

Now, in a manner consistent with our interpretation
of the u integrals, we can deform the u contours
through the convergent quadrant to the imaginary
axis, avoiding the branch points at 4/ in the appro-
priate manner. Then using the variable v = in in Sy
and v = —iu in Sy;; we find that the contributions to
the two integrals from the region 0 < v <1 cancel,
while the remainder gives®

1 —3 00 o0 B
Su+ Su = = 55 | | dpf (o)t [ “dutet — e

=4[ ::dpf(p)ps[— ML e

Er

To evaluate the loop integrals (Figs. 1 and 2) we let
o= —(1* + R*)} @2

in both L; and £;, and take 6 as the new variable. In
both cases 0 ranges from 0 to +=/2. We may now add

L; and £y, with the result that 4 ranges from zero to
infinity. We can now go back to p = Re®, and we set

—iR o
L+t =-1 f dopf (p) f ARG + g
47’ J-r 0

x exp [EG® + p)'). (23)
In this expression the phase of the square root is to
be chosen so that it becomes a negative real quantity
as p becomes real and negative. Thus the function
represented by the A integration is the analytic con-
tinuation of the corresponding function in Sy + 8;

8 Reference 2, p. 172.
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[see Eq. (14)] as p follows the circular arc from —R
to —iR. The corresponding calculation for Ly + £
yields the corresponding continuation of Syy + 8y
with the net result that the R limits on the remaining
p integration in both Sy + 8; and Sy + 8;; can be
replaced by —iR upon adding the contribution of the
loop integrals.

The contour of the integral for Sy + Sy may be
deformed, by Jordan’s lemma, to go to infinity along
the real axis and may then be combined with the other
integrals. Upon replacing r by p times an appropriate
phase factor we have

Si+ S8+ L+ 8+ S+ S
1 —iR im in
-5 f_ ) dppzf(p){z—E [H®(Epe'™ + H?’(Ep)]},

24
Siv + 8 4 Ly + L1 + Sy + Sun)

=L (7 2 =T {2)
= o5 [ aerr oS5 v Ep) + 1B,

The sum of the Hankel functions yields —2J,(Ep)
in the first case and 2J,(Ep) in the second, so we have

—i
(27)YE
where f(p) is given by Eq. (10). The p contour runs
from — oo to 4 oo below the origin. If this contour is
chosen to be symmetric under p— e "p*, then it
can be shown that the contribution from the left half
of the contour is the negative complex conjugate of
the contribution from the right half. Thus the above
expression for S, is real, as is required.
We note that we may also write

SA(E) = [ dpp((Ep),  (25)

—i
2(27)E

since the contour integral in which H{* replaces H{"
vanishes because the integrand is analytic in the
entire lower half-plane. This form is convenient for
consideration of the nonrelativistic limit.

S(E) =

f dpg*f () HI(Ep),  (26)

II. EVALUATION OF THE INTEGRAL
The integrand of the expression for S, [Eq. (25)} is,
apart from constant, real factors,

" HP (myp)

g(p) = —ip’Jy(Ep) g (27

This function has a single saddle point on the negative
imaginary axis because it takes the form

g(—iy) = ym(Ey);:Il [2 Kl(mky)]. 28)

my
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Paths of constant phase in g(p) generally connect
the consecutive zeros of J,(Ep), and there are saddle
points for each of these segments. Since g(p) alternates
in sign on different sections of these portions of the
contour, large cancellations are expected, and, further,
the integrand has its largest value at the saddle point
on the negative imaginary axis. Thus the dominant
contribution to the integral, taken along a path of
constant phase, comes from the neighborhood of the
saddle point on the negative imaginary axis. We may
therefore approximate .S, by the standard saddle-point
technique. Thus if we let p = —iy, we find that the
saddle point is located at the solution of

1—2n EI(Ey) < mKy(my)

=0. (29
y L(Ey) #=1 Ki(myy)
Let y, be this root. Then
Yoly(Eyo) L [4mmy,
SAE) ~ Ki(m,
By~ 2T [ imeyo)|
4n — EI(Ey,)]?
X 21 e+ [—"——“}
{ Ve kE 11(EJ’02
_ v [mK, o(mk}’o):l 2}_ 30
kg[ Ky(myyo) -

The accuracy of this approximation can be judged by
a comparison with the exact results for the non-
relativistic and extreme relativistic limits.

On examination of Eq. (28) one finds that the saddle
point occurs as a result of a balance between the
decreasing functions in the product over k¥ and the
increasing term, y*I,(Ey). As the energy is reduced
the minimum is reached for larger and larger y. Thus,
to obtain the exact nonrelativistic limit, the predomi-
nant contribution to the integral arises from large
values of p and we may use the asymptotic expansions
for the Hankel functions in Eq. (26). After some
rearrangement we find?

~ (2m)er52ph -t (=D, D
Sa > (2m) PE zgo (RE)
(1»]70)
im0 [k=1 (2mk)ij

X {i[(5n—5)/2]—l—2:ikfdpesz [—(3n—2)/2]— l~£:k} (31)

x 3

1=0

We have used the abbreviation P for the product
of the masses and will use M for their sum. The
kinetic energy is 7 (= E — M). Now the term in

braces is simply
T% n—§+I+Liy

F(gn——g+l+2jk)
k

7 Reference 2, p. 198. The symbols (v, m) are defined there.

(32)
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Thus we have obtained an asymptotic expansion of
S, in powers of T (if the inverse powers of E are so
expanded). The first term of this expansion is
-5

TEGn — 3]
This agrees with the nonrelativistic phase space
computed by more elementary methods.

In this limit we can examine the accuracy of the
saddle-point approximation. The saddle point is
located at

R _ (2ﬂ)§(3n—3)P%M—§ (33)

po = —3i(n — 1)/T. (34)

Application of the saddle-point method to the integral
yields the above result with the I' function replaced
by Stirling’s approximation to it. For n =2 this
approximation is in error by about 6%, and the error
decreases as n increases. We note that this estimate
applies only when E, and m;p, are all large, that is,

$3n — 3)(m,/T) > 1; (3%)

otherwise the saddle point of the original integral
would not occur in the asymptotic region of the
Hankel functions.

We can also easily determine the asymptotic value
of the phase space in the extreme relativistic case. In
this case, we expect p, to be very small. Thus we can
expand the H{¥(m,p) for small values of the argument.
If we assume that E is large, however, and use the
asymptotic form of H'(E), we then deduce that

po = —i(2n — E. (36)

Thus Ep, is large only if 2n — § 3 1. On the other
hand, we can carry out the integration in Eq. (25)
without expanding J,(pE), and we find

7ILL‘R= 277,71—1 ‘ E
(n—DI(n -2t

This result agrees with the saddle-point approximation
again to the extent that the factorials are replaced by
the Stirling approximation. In this case the Stirling
approximation is not as good as before, and an 119
error is found for n = 3. The ratio of the approximate
to the exact result approaches 1 with reasonable
rapidity as » increases. This is to be expected, for as
n increases the saddle point of this integral moves
into the asymptotic region of J;, where the saddle-
point method was applied to find S,,.

IV. APPLICATIONS AND VARIATIONS

Extensive numerical calculations have been made
with the phase-space or “statistical”’ model by use of
this approximation.® Numerous comparisons with

2n—4

(37

8 G. H. Campbell, University of California, Lawrence Radiation
Laboratory Report No. UCRL-16315 (1965).
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the exact two- and three-body phase space have
confirmed the error estimates presented in Sec. 111.

The noncovariant form of the phase-space integral
may be treated by similar methods to those used for
the covariant form. The noncovariant form is

S.(E) = j 6(E -3 w,.) 59 (é p,.> I:! &p,. (38)

i=1
This has previously been reduced to?

S,== [T f dnitre*E T]
41T3 —n—im 0 k=1
27°m
x [T H e = h]. 9
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The only essential difference between this and Eq. (9)
is the factor «”. These integrals define generalized
functions; hence we may replace this factor by n-fold
differentiation with respect to the energy. Then, using
the results of the covariant calculation, we may write

-~ _ 2 _4__"J1(EP)
5.5 = f dps™f(p) ( dE) 28, 0
where .
fo) =TI [3”—’"— H‘:’(mkm]. @1)
=1 ip

Although the saddle-point method is in principle
applicable to this integral it is not convenient for
numerical approximation, because the form of the
integrand depends upon ».
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Two general results applicable to the problem of a canonical definition of the Wigner coefficient in U,
are demonstrated: (1) the existence of a canonical imbedding of U, x U, into U,z and (2) a general
factorization lemma for operators defined in the boson calculus. Using these results, a resolution of the
multiplicity problem for U, is demonstrated, in which all degenerate operators are shown to split

completely upon projection into U, .

L. INTRODUCTION

N extension of the techniques of the Wigner-
Racah angular momentum calculus (WRC)

from SU, to an arbitrary group is a problem of evident
importance in quantum mechanics, and it has been
recognized as such since the problem was first formu-
lated in the works of Racah' and of Wigner.? A very
extensive literature® has developed, especially in
recent years, and partial solutions (that is, for certain

* On leave from Istituto di Fisica dell’Universita, Torino, Italy.

1 G. Racah, Ergeb. Exakt. Naturw. 37, 28 (1965) (this paper is the
published version of Racah’s Princeton Lectures, 1951).

® E. P. Wigner, in Selected Papers on the Quantum Theory of
Angular Momentum, L. C. Biedenharn and H. van Dam, Eds.,
(Academic Press Inc., New York, 1965) (this paper is the published
version of Wigner’s unpublished paper, 1940).

3 Recent references which cite the earlier literature extensively are
J. G. Nagel and M. Moshinsky, J. Math. Phys. 6, 682 (1965), and
J. D. Louck, J. Math. Phys. 6, 1786 (1965); see also Ref. 4.

groups) have been developed.! The unitary groups
U, play a special role in this problem, partly for their
own sake as higher symmetry groups in elementary
particle and nuclear physics, but more basically as a
structure sufficiently large to encompass all compact
groups. Thus, for example, it appears likely, owing to
the close relationship between the symmetric and
unitary groups,® that a solution for U, entails a
corresponding solution for §,,.

The present work has as its objective to demonstrate

4 This has been discussed in a series of papers by G. E. Baird and
L. C. Biedenharn (a) J. Math. Phys. 4,436 (1963); (b) J. Math. Phys.
4, 1499 (1963); (c) J. Math. Phys. §, 1723 (1964); (d) J. Math. Phys.
5, 1730 (1964); (e) J. Math. Phys. 6, 1847 (1965). The present paper
continues this investigation.

5 G. de B. Robinson, Representation Theory of the Symmetric
Group (University of Toronto Press, Toronto, 1961), cf. Chap. 111,
especially.
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two basic results related to the existence of a canonical®
solution to the problem of extending the Racah-
Wigner calculus to the complete family of unitary
groups U, . Earlier [see Ref. 4(d)] it was shown that
the splitting between the two independent octet
operators (F and D in Gell-Mann’s notation) could
be extended to all operators in SU,; and thereby
defined a resolution of the multiplicity problem for
this particular group. As is often the case, a more
general viewpoint can yield results that are at once
both simpler to understand and more far-reaching; by
focusing attention on the complete family of groups
U, this turns out to be the case here. Accordingly, we
do not assume any detailed knowledge of our earlier
papers on this subject and emphasize instead the
basically simple group-theoretic structure of our
solution by developing the results directly.

From a group-theoretic point of view, there is but
one type of problem that enters in the extension of the
WRC to any group: this is the problem of labeling
(uniquely) the irreducible representations (irreps) of
a subgroup that occur in the restriction to this
subgroup of an irrep of a larger group.

Put this way the problem seems rather vague and
unattractive; let us illustrate the content of the problem
by considering the “state-labeling problem for SU,,.”
The subgroup to be considered here is the Abelian
group H (generated by the Cartan subalgebra) of the
generalized charges, for example, the ordinary charge
Q and the hypercharge Y for SU;. For a given irrep
of SU,, the charges (denoting irreps of H) are well
known to be insufficient labels. The solution to the
labeling problem is equally well known: it is the chain
of subgroupsdenotedby U, » Uy x U, ;= -2 H
whose representation labels, by the Weyl branching
theorem, uniquely label all states belonging to a given
irrep of U,. The Gel'fand pattern [Ref. 4(b)] is just a
convenient shorthand to express this labeling induced
by the Weyl branching law.

It is tempting to denote this elegant solution to the
U, state labeling problem as “canonical.” In the sense
in which Artin? uses this term® this would be incorrect,
for there are indeed many free choices involved. The
situation is rather like that discussed by Artin of
obtaining an affine plane from a projective plane by
deleting a particular line. A canonical construction has
to be explained as an equivalence class corresponding

¢ The precise meaning intended for this term is discussed below
in this section.

? E. Artin, Geometric Algebra (Interscience Publishers, Inc., New
York, 1964).

8 “The word ‘canonical,’” or also ‘natural,’ is applied in a rather
loose sense to any mathematical construction which is unique in as
much as no free choices of objects are used in it.”” (Ref. 7, p. 3.)
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to the designation of a particular U;, out of the set of
all equivalent U, groups, at each stage of the decom-
position. Viewed in this way, it is then proper to denote
the Weyl decomposition as “canonical.”” This is
important, for we regard the Weyl result as the very
model of a successful labeling, and the results to
follow are in fact generalizations of this idea.

The essential labeling problem to which the exten-
sion of the WRC leads is this: In considering a
quantum mechanics on the manifold of states be-
longing to U,, the relevant set of operators is that
which carries any state of any irrep to any other state
of a (possibly different) irrep. This set of operators
belongs to the diagonal subgroup of the group
U, x U, (where we have mapped the adjoint states of
U, onto U,). The ‘“diagonal subgroup”—denoted
by U, ® U, (both the term and notation are due to
Mackey®)—is that subgroup of U, x U, whose
elements have the form (g, g) where ge U,,.

One set of labels for this set of operators is induced
from the group U,,; this is the tensor operator labeling,
determined by the generators of U, . This set of labels
is sufficient whenever in the restriction of an irrep of
U,x U, to U,, every irrep of U, occurs at most
once. If this is true for every irrep of G X G then the
group G is said to be multiplicity free (mf).

The problem of labeling the operators of a not mf
group is the multiplicity problem to which this paper
is addressed. Among the unitary groups only U, and
U, are mf.

In order to resolve the multiplicity problem, one
possible group-theoretic procedure is that of im-
bedding. The group (taken to be not mf) is embedded
in a larger group G’ such that G’ G and G’ is itself
mf. It appears offhand very unlikely that such a
procedure could ever be successful but two examples,
are known: (a) 4, (the alternating group on 4 elements)
imbedded in S, (the symmetric group on 4 elements),
and (b) 4; imbedded in R, (the three-dimensional
rotation group). Since these examples are models for
the work to follow let us consider the first in more
detail.

There are four irreps of 4,, denoted by I'y, I, ,I" .,
and T'; of dimension 1, 1, 1, and 3, respectively. Only
I'; is not mf and one finds that: Ty x I'; = I'y, +
I, + Iy 4 200,

For S, there are 5 irreps denoted by I',, '35, L s
[, and T s, of dimension 1, 3, 2, 3, and 1, respec-
tively. The group S; is mf.

To split the multiplicity we note that both I3, and
L,2, yield T'; upon restriction to 4,. If we carry out

? G. W. Mackey, “The Theory of Group Representations,”
lecture notes, The University of Chicago (1955) (unpublished).
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the multiplication in S, and then restrict to 4,, we find
for example

I‘(31) X P(31) = F(4) + P(r% + F(sn + Fm?;
¥\
I's x I'y = I+ 4+ Iy + 20,

It is clear that the group S, allows one to define,
group-theoretically, labels for two distinguishable
(in Sp)irreps of 4,: I'; and I'; whose “multiplication”
is mf. In this way the imbedding allows one to split
the degeneracy and hence affords a group theoretical
resolution of the multiplicity.

Now, it should be noted that this model for the
resolution really demands only that the group G’ have
a sufficiently large set of mf representations to label
all the representations of G; it is not necessary that
G’ itself be mf. It is this fact which makes the U,
problem solvable, for generally speaking the larger
the group the larger the multiplicity.

We are now in a position to categorize our proposed
solution to the multiplicity problem. We demonstrate
that every irreducible representation of U, may be
given a suitable set of additional labels by imbedding
U, in U, x U, which is itself imbedded in a mf way
in a totally-symmetric representation of U, (Proposi-
tion 1). For such representations of U,., the multi-
plication is itself mf (Lemma 5). In consequence, this
shows that there exists a labeling scheme sufficient to
split all multiplicity in U/, .2

Of itself this is an interesting and suggestive result,
but it does not suffice for demonstrating the unique-
ness (to within phases and normalization) of the
Wigner coefficients. For this, we first categorize the
Wigner coefficients in U, as projections from U,.,
next we show the Wigner coefficients in U, to be
eigenvectors of a U,. Wigner coeflicient, and then
establish Lemma 7 which explicitly determines the
eigenvalues to which these eigenvectors belong, for
all U,. To resolve the multiplicity we demonstrate
that, for Uj;, all operators split completely upon
projection onto suitable operators in U,. The results
for U, are summarized as Proposition 2.

In order to make the presentation self-contained
and precise, we have chosen to depart from the
discursive style of physics to the more succinct
“theorem-proof” style. We hope by this to gain in
clarity—not to imply that the results are necessarily
mathematically novel.

10 t has been called to the attention of the authors by Professor
M. Moshinsky that a similar type of idea was proposed by T. A.
Brody, M. Moshinsky, and L. Renero, J. Math. Phys. 6, 1540 (1965).
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II. THE EXISTENCE OF AN ADMISSIBLE
IMBEDDING

In a group which is not mf, the first anciilary task
is to determine and categorize the extent of the
multiplicity. For U, this was a basic result contained
in Ref. 4(d): The tensor operators in U, may be
characterized by two Gel’fand patterns each carrying
the same representation labelsin U, , i.¢., each Gel’'fand
pattern refers to the same Young frame.!! The two
Gel’fand labels (one inverted) can be placed one above
the other in a diamond shaped pattern §; this
extended Gel'fand pattern (operator-pattern) then
characterized all tensor operators in U, in a one-to-one
fashion.

The two Gel'fand patterns, however, play quite
different roles; the lower pattern (/-space) is com-
pletely defined operationally as the tensor operator
labeling under commutation with the generators of
U,. The upper Gel'fand pattern by contrast is not
(at this stage) a true labeling scheme but rather a
shorthand to enumerate the multiplicity.

Nevertheless the notation strongly suggests that one
attempt to define upper pattern space as the carrier
space of a U, group. In fact, we had two realizations
in mind when this notation was introduced, and if we
elaborate on this it may help to motivate the work to
follow.

(a) The first realization lies in the representation
matrices Diminl . ({6,}), themselves. These matrices
carry three sets of labels: the irrep labels in U,,
[m;,], and two sets of Weyl decomposition labels
[Gel'fand labels (m), (m') of U,_,]. 1t is not difficult to
see that these are precisely equivalent to an operator-
pattern. But now the two spaces (u- and /-space) are
completely definite: they are each isomorphic to U,
and their generators commute. Hence the representa-
tion matrices may be looked upon as the carrier space
of irreps of U, % U,, where the % denotes a direct
product group modulo the relations that specify that
the irreps of u- and /-space share the same U, labels
(Young pattern).

(This may appear complicated but it is really very
familiar; recall that the D matrices of SU, are them-
selves orbital irreps of Ry~ SU, x SU,. The u-space
here is just that of the angular momentum in the body-
fixed frame. All these ideas generalize; see Refs. 12
and 13.)

(b) The second realization lies in the boson calculus.

11 An independent proof of this result is contained as a corollary
to Lemma 7 below, and hence the present work is self-contained.

121, C. Biedenharn and P. J. Brussaard, Couwlomb Excitation
(Clarendon Press, Oxford, England, 1965), see Chap. 7, especially.

13 G. E. Baird and L. C. Biedenharn, paper presented at the
Eastern Theoretical Physics Conference (1963).
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Consider the (creation) operators {g,} which transform
according to the irrep [1 0] in U, (the dotted zero
denotes “repeat as often as required”’). If we consider
n distinct copies of these operators we may denote
them by the set {a}. Clearly, the space of the index j
is isomorphic to that of the index i; moreover, {al}
has the same Young frame [1 0] in both u- and /-space.
In other words, {al} is a realization of the operator-
pattern (1 0); it follows that multinomials on the set
{a}} may be completely classified by operator-patterns
as states in U, x U,,.

Both realizations are essential in the work to follow.
We must emphasize, however, once again that the
operator-patterns introduced in Ref. 4(d) to enumerate
the Wigner operators do not designate states of
U,* U, (since u-space had no group theoretical
significance there). We should also emphasize that it
is the operator-patterns in U, which are of basic
interest, and not so much the special realizations by
state vectors in U, x U,. (In fact, a notation which
distinguished these ideas might be better.)

Let us now consider in more detail U, % U,. The
first result we wish to assert is almost trivial, though
necessary.

Lemma 1: The irreps of U, % U, are of dimension
(dim [m,,])%, where m;, are the Young pattern labels
of the two U, groups, and dim [m,, ] denotes the Weyl
dimension formula.

We next establish formulas equivalent to the Weyl
dimension formula which represent two distinct ways
to regard Weyl’s result, one from the point of view of
hook patterns, the other in terms of the symmetric
group and the Schur functions.

Weyl’s result for the dimensionality of the represen-
tation {m,,] of U, (where m,,, m,,, -, m,, denote
the lengths of the rows of the Young frame) is given by

dim [m,,] = [T (L — /1121~ (n = D (D

i<k

Let us now introduce the idea of the hook length h,,
of the (if}th node (box) of the Young frame [m,,]:

where m,, is defined to be the number of nodes (boxes)
in the kth column of the Young frame [m,,].

The product of all the hook lengths in the Young
frame is denoted by

Hbtminl =TT hy,.

ik

@
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Similarly we introduce a function Gt™=)(x) defined on
the Young frame by:

Glminl(x) = H(x + k-0, 5)

where (i, k) runs over each node of the Young frame
[mm]'

With these definitions the Weyl dimension formula,
as shown by Robinson,* takes the following useful
and very intriguing form.

Lemma 2: dim [m,;,] = GUul(n)] Himl,

Next let us discuss the Weyl dimension formula from
the point of view of Schur functions.’> We denote
first by S, the symmetric functions of the n variables
(i =1, -+, n) which are homogeneous product sums,
ie.,

S, =3 @) ©)
i1
We define, as usual, the matrix Z, by the form:
S, i 0 cee 0
82 Sl 2 0 R 0
@)= S S, 5 3 0 ’
S:,-Al S?.‘2 T Sl ¥ — I
S, S, ce Sy Sy @)

and define an immanant of the n X n matrix (a,,)
corresponding to the Young frame [4] (having n nodes)
to be:

lay ™ = 3 2 (S)Py, ®)

where
(a) the sum is over all n! permutations S;
(b) Py = a4, " a,; and S is the permutation
(iy - -+ i,) of the integers 1 - - - n;
(c) x*1(S) is the character of the representation [4]
of S, , the symmetric group on n symbols.

With these definitions the Schur function {A} is given

b
Y rt{i} = |Z,|H. Q)

Since, as is well known, the characters of the unitary
group correspond to Schur functions of the character-
istic roots of the (matrix) representation, we see that
the dimension formula of Weyl must be the special
Schur function corresponding to the identity element.
That is,

Lemma 3:

dim [m,,] = ("’)‘ICZ(")”Q’ L #(C) - £minXC),

14 See Ref. 5, p. 60.

15 D, E. Littlewood, The Theory of Group Characters {Clarendon
Press, Oxford, England, 1950), see Chap. VI.
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where

(a) k denotes the number of nodes in the Young
frame [m;,];

(b) C denotes the class of the permutations in §,,
written in cycle structure form, i.e., as a Young
frame;

(¢) /(C) denotes the number of rows in the Young
pattern of the class C;

(d) #(C) denotes the number of elements in the class
C; and

(e) xtmi1 (C) is the character of the irrep [m,,] of
S, for the class C.

Proof: This is simply a matter of direct substitution
of a; = 1 (corresponding to the identity element of
U,) into the definition of the Schur function given
above.

Lemma 3 is relatively complicated, but it is our
desired expression for the Weyl dimension formula of
U, in terms of the symmetric group S, . It should be
noted that the hook form gives the Weyl formula in
factored form, whereas the result above gives the same
formula as an explicit polynomial on n. Both are
useful, but our specific application is the following,

Lemma 4: Y (dim[m,,])? = dim [k0],,.,
where the sum on the left extends over all Young
frames with

n
k = z Min

nodes each taken once. o

Proof: Taking the square of dim [m;,], using Lemma
3, and summing over all Young frames, one may
invoke the orthogonality theorem for the characters of
S, to eliminate one of the class sums (noting the
necessity to normalize correctly).

This yields

> (dim [m,,])* = (k1™ g (n)"© - #(C). (10)

But by Lemma 3, the right-hand side is just the dimen-
sion of the irrep [k 0] in U, and the result follows.1

As it stands, this result, Lemma 4, is an interesting—
possibly even rather surprising—relation between
certain representations of U, and U,. The real
significance of this result, however, which we wish to
emphasize is much more important and we assert it
as Proposition 1.

Proposition 1: There exists a multiplicity-free im-
bedding of any representation (n,,) of U, x U,ina
totally symmetric representation [k 0] of U,., where
k =3"_,m,,.(Multiplicity-free means here that [k 0],

16 [ ouck, Ref. 3, has independently obtained this result.
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contains each irrep (m;,), whose Young frame con-
tains exactly k£ boxes, once and only once.)

We may readily appreciate the importance of this
imbedding if we remark now that,

Lemma 5: The multiplication of the total symmetric
representation in U,, is multiplicity-free.

To prove this assertion we use the results of Ref.
4(d), or simply observe that the fundamental Wigner
operator [1 0] has this property and that an induction
on k establishes the desired answer directly.

III. THE FACTORIZATION LEMMA AND
APPLICATION TO THE CANONICAL
DEFINITION OF THE WIGNER
COEFFICIENTS IN U,

Proposition 1 and Lemma 5 of the preceding
section demonstrate that the imbedding of U, in U,.
allows one to associate with each representation of
U, *x U, a canonical set of labels given by two Weyl
decompositions. (It is clear that canonical here means
*“to within an equivalence class’ in accord with earlier
comments on the Weyl decomposition.) The set of
labels in upper pattern space allows one to distinguish
in U, and in U, x U, representations of U, (more
definitely, states in U,, ie., lower pattern labels)
which are otherwise indistinguishable. Since this
extra labelling as well as the multiplication is mf in
U,:, we have clearly made progress toward our goal
in precisely the manner indicated by the example of
imbedding 4, in S,.

However, this is not yet enough to assert our desired
final result; the desired final result concerns itself with
defining a unique Wigner coefficient, i.e., the matrix
element of a fully labeled (possibly, though not neces-
sarily, labeled in U, % U,) tensor operator acting
between states of U,. We have proved, however, only
that matrix elements of states, all in U, % U,, are
uniquely fixed—and it is conceivable that in suppress-
ing the extra labels (in some unspecified way) a
multiplicity could once again be re-established. It is
the purpose of this section to demonstrate that this
does indeed occur, and show how the problem is
resolved for Uj.

Let us begin once again with an easy result.

Lemma 6: The matrix element

[k + k' 0]z | [K" O)cpey | [k 0] ey
< (A1 4" A A /
@) m) | @)ym)| (@ (m)

<O~ 13
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is a uniquely determined real number fully specified by
the U, % U, labels.

Proof: The proof is immediate: one need only note
that this matrix element is no more and no less than a
Wigner coefficient in U,. corresponding to unique
states of totally symmetric representations. [The
algebraic resultis in fact deduced from the fundamental
Wigner coefficient in U,. as given in Ref. 4(b).] It
should be noted that f(- - -) is symmetric under the
interchange pu u' u" «>mm’' m’.

A Wigner coefficient must now be defined as a
projection on the matrix element f(---), and this
projection must suppress a// upper pattern labels.
(Otherwise ome is implicitly assuming, without
justification, that upper pattern labels have a signifi-
cance not demonstrated so far.) Lower pattern labels,
on the other hand, have precisely the desired signifi-
cance by virtue of the original group U, . This shows,
moreover, that the projection P(: - ) must be linear,
so that we must have the general form:

uowop . ogn
u‘%”f(}« A /"»H)P(g)(l l, l,,)

m m m’ L

g
=cl2 » ¥, ay
m m/ m”

where G(- - *) is a Wigner coefficient, possibly complex,
with (g) labeling the multiplicity. It is easily established
that this coefficient has the transformation properties
under U, specified by the (4, m) indices.

We must now prove an essential lemma concerning
the matrix element f(- - -), viewed as a matrix in (u),
(m) space.

Lemma 7: The matrix
) powo@
FGry=Fom =4 © @
m m? m"
is real and symmetric and may be brought to diagonal
form. The orthonormal eigenvectors defined by this

diagonalization are Wigner coefficients in U,. This
diagonalization takes the explicit form:

popow n NSt
55 %) -[3a/(3)]
X gA(z 'z")/

\m”
N,
)|/

A\
m/

(x

/v

N \%/ |w
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where
1 = WA . "___j'LD_'%
(@) AN = [x " U(E)] [H(Ml .t n— l)')}

x (dim [A]/dim [A"])},

(b) ¥*Y(E) is the identity character of [1'] in the
symmetric group, Sy,
(c) U, Wigner operators are denoted by

VANVAN
/L)

in /- and wu-space respectively,

(d) T' denotes the set of operator (upper pattern)
labels in U, or, equivalently, any set in 1-1
correspondence with this.

Proof: Let us first state the specific normalization of
the matrix F; as a matrix element of a (unique) Wigner
operator in U,., this obeys the usual normalization
conventions, i.e., the operator is orthonormal and the
matrix element between maximal states with maximal
change in irrep labels is defined as +1.

The fact that F is real and symmetric has already
been established. Any such matrix may be brought to
diagonal form by a real orthogonal transformation.?
Wherever the eigenvalues (necessarily real) are
distinct this defines unique eigenvectors (to within
order and phases).

Next let us note that

vowooy
f‘ l Zl }.”
m ml m”

transforms under the group U, x U, as the identity

component of the direct product A"y x (A) x (A",
It follows that f(- - -) has the general form

nopwow
i EA‘“

m ml ml/

g g
xGli A r|Glr & 1), (12
m ml m/l M #I 'u/ll

where the G(---) are (orthonormal) Wigner coeffi-
cients in any (canonical or noncanonical, i.e.,
arbitrary) breaking of the multiplicity. It follows that
the matrix A4, is square and may be brought to
diagonal form, thereby defining Wigner coefficients as
eigenvectors. The main task here concerns the
explicit evaluation of the (real) eigenvalues, A(A4'4").

17 F. Tricomi, Lezioni di Analisi Matematica (CEDAM, Padova,
1948), Pt. 1, p. 317.
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We establish the validity of the stated result by
recursion; it is most convenient for this purpose to
use the language of operators. The matrix element
F(AX'A"y is a specific matrix element of the unique
Wigner operator in U,. which (1) transforms as the
state (with k' = > A{, quanta)

[k"0](r2)
[A'1A] N
(u)(m)

and (2) induces maximal change in the irrep labels

/,l,’
of states of U,.. We denote this operator as O(l’ )

ml
The factorization stated by the lemma applies only to
totally symmetric initial states in U, and we suppose
throughout the following that the initial states are
restricted to this class only. The plan of the proof is
then the following. The result for k' =1 (e,
fundamental Wigner operators) is not trivial but can
be shown directly [or equivalently from Ref. 4(b)].
The recursion proceeds by assuming the lemma valid
for k' quanta and demonstrating that this implies the
validity for k" + 1 quanta.

To relate the operators for k' 4+ 1 quanta to the
operators for k' quanta, we use the coupling aspect of
the Wigner operator {1 0] in U, to couple the oper-
ators for k' quanta and for 1 quanta to form the
operator for k" + 1 quanta. This step shows that the
normalized operator for k' + 1 quanta is of the form

/.l,'
O\M' | =
mr

> (k' + )7PAQMI, 1 0L, (M)

{M1y)
(m)(u)
(r)(p)
/| /DN | i\
*Nom) |\ | em)/
/1| /PN [\
*\ @) \[ép‘))]/ Y

[{5h)
X O0110JO0IM]). (13)
r m

[The order is essential. The operator O(AM) acts first,
then O(1 0); hence the coupling reads in the same
(right to left) order.]

By hypothesis, we may introduce the eigenvalue
expansion for O(1 0) and O(M) as an operator relation.
Note that (a) when the (- - ) act in different spaces
(/- vs. u-space) the Wigner operators commute, other-
wise not; and that (b) the particular structure of
A(- - -) shows that these operators always commute.
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With these simplifications in hand, the operator O(M")
takes the form:

0(1&,’ ) = (k' + 1)—*[@1 z‘mtial) /(§ Aml) _]é

x 3 AM, MHAIM), [1 0, [M'])

[M]
(7). (F, ()
/ ) \

/ M)
(m) (r \\

M\
\(m")

/(m)/
<P> T
<[1 Y [Mk]}
»/ \em

VASANTTYIN
\Y | w/

/T k
D)

(p) ()

[In this equation, the operator A(M, M) denotes
the product of the A operators for 9(1 0) and O(M)
and is specified fully by the arguments [M] and [M’]
once the initial irrep (4™ js specified.]

Note that in the coupling [M] ® [1 0] = [M’], the
irrep labels [M] are specified by [M’] and (). Note
also the structure of the terms in this result for
O(M’): each sum in brackets > {- -} specifies, for
fixed (y), a normalized operator in U, which trans-
forms as [M’], (m"), or [M'] (&) in /- or wu-space,
respectively. Since such operators are not necessarily
unique, we may rewrite these sums in terms of an
arbitrary breaking of the multiplicity

/(y) A\ /(Pl)\ /(F \
Qo) (0o o)

/ M)
(u) (p) \(.L ’)

/ [M']
(m), (r)\ (m )

/(Ft)\
= ZR(P r Ft \[M']/
@ (m")
Here R(I',T',T')) denotes a Racah coefficient in U,,,
defined, by this relation, for an arbitrary breaking of
the multiplicity. (We have suppressed various indices
in writing this coefficient in order to simplify the
notation; this should cause no ambiguity.) A relation
similar to Eq. (15) holds in u-space.

Introducing these relations into Eq. (14) and sum-
ming over all (I';) and (T'}) [for fixed (I, and (T',)]
we find from the general orthonormality properties of
the Racah coefficient'® (independent of the multiplicity

(13)

18 J. R. Derome and W. T. Sharp, J. Math. Phys. 6, 1584 (1965).
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problem) that the following sum factors out and
yields
Z R T)RIGTLT ) = o1, Ty).

(I'y). ()

(16y
The final step requires the use of the identity
3 HEFRE +
(M1
) ,
(M}, + n — i)\ dim [M]]?
1 (G =0) mond

i1 \(M,;, + n — i)!) dim [M']
= [{MYE)E. (A7)

This identity can be shown directly by recursion, and
although hardly an obvious result, need not be proved
here.

These results suffice to show that the operator
O(M’) for k' + 1 quanta has precisely the form
specified by the lemma, if O(M) for k' quanta has this
form. Hence the lemma is proved.

Remarks:

A. The essential point about Lemma 7 is that it
asserts a general factorization of the boson operators
of U, * U, into characteristic operators of the U,
group itself; we refer to Lemma 7 as the “factorization
lemma for the boson calculus™. This result is not only
interesting from the point of view of structure, but is
a very powerful tool for actual computations. Lacking
such a general tool, it was necessary [in Ref. 4(b)] to
define the fundamental Wigner operators, (1 0), by
means of the ‘trick’ of projecting U, generators into
the fundamental operators of U,. It is clear (in
retrospect) that an uncritical use of the elementary
boson operators a? is not fully satisfactory for defining
(10), precisely because the idea of factorization needs
to be clarified first.

B. The occurrence of the character y(E) of sym-
metric group in the eigenvalue expression given in the
lemma is a direct consequence of requiring the operators

{7
0 l) to comprise a single Wigner operator in
m
U,.. The character can be eliminated if we nor-
malized each (1) component of the operator indi-
vidually. Note, too, that the eigenvalue [aside from
x(E)] is just the ratio of the pattern measures [cf.
Ref. 4(b)] of the maximal initial and final states.

The factorization lemma turns out to be basic to the
systematic development of the boson calculus for U,,.
Let us indjcate this by stating a number of assertions
that result from Lemma 7.

1. (a) The number of distinct eigenvectors of the
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operator [k 0] in U, is given by precisely
2, dim [M],
[M]
where the sum is over all lexical patterns in k¥ quanta.
(b) There are as many eigenvectors (= Wigner
operators) that transform in U, as the irrep [M] as
there are states, namely dim [M].

2. The dimensionality of the matrix 4, [cf. Eq.
(11)] is precisely I(A7], [A] ® [A']), where I(---) is
the intertwining number.?

3. The degeneracy structure of the eigenvalues of
O([M]) exactly parallels the degeneracy structure of the
state vector of the irrep [M]. Put somewhat differently
we may assert that

(state vectors of [M]«> weight vectors) <
(operator (M)« changes in irrep labels).

[This equivalence was proved earlier in Ref. 4(d); it
underlies the enumeration of the Wigner operators
(M) by operator (upper Gel'fand) patterns which
specify the changes in irrep labels.]

4. Every Wigner operator in U, may be obtained
from the reduction of direct products of fundamental
Wigner coefficients. An alternative form for this
result is the assertion that the set of Wigner operators
{[k 01} in U, [equivalently the set of boson (creation)
operators in U, % U,] yield Wigner operators in
U,, each operator occurring as an eigenvector once
and only once.

The factorization lemma shows that the embedding
of U, into U,. does not, of itself, resolve the multi-
plicity problem (since the eigenvalues of Lemma 7
have precisely the degeneracy of the intertwining
number). Nevertheless the factorization lemma does
supply the key to the resolution; we demonstrate this
for U, in detail and obtain Proposition 2 below. For
the generalization to U, we refer to a subsequent
paper.?

The key to the resolution lies in the splitting of the
multiplicity under restriction to operators belonging
to a subgroup. In other words, the multiplicity for
operators is resolved in a manner analogous to the
resolution of the state labeling problem—in both, the
key idea is a branching law.

It is helpful to introduce a notation. The U; operator
(M) is designated by the upper pattern labels

(00 ™ wn)=@

18 The assertion of Proposition 2 in our original paper contained
a serious error, and our original statement of Lemma 7 was incorrect.
We discovered this error while our paper was being set in type, and
have revised the present version accordingly (30 December 1966).
The generalization to U, requires additional considerations which
appear best treated in a separate paper.
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and the subgroup labels

(m12 e m22) = (m).

The operator is fully designated by the lexical operator
pattern

The significance of the upper labels (a) is that they
specify the changes induced by operating with (M)
on a definite initial state [(1))
Ay = lf.i;al _ li_gitial
with
Mg =ay, Ay = a5+ as—ay,

Agy = myz + Mo + Mgy — @35 — ay,.

Operators with the same a,, + a,, induce the same
changes, that is, the same set {A;3}. The resolution of
this multiplicity (in other words, the significance of
the a,,, a,,) is supplied by the following lemma.

Lemma 8: The Wigner operators {m;gmasmgg) in U,

Myg
\mla . maa/
split completely. Operators whose upper patterns have
maximal a,,-a,, have a nonzero restriction; all other

operators have zero restriction.

under restriction to the U, operators

Proof: We use the factorization lemma and con-
sider the U, Wigner operator having the U, U,
irrep labels [myamgamys],

(m) = (ml“ m”) and (u') arbitrary
Myg

taken between the initial state (in U, x U,)
M

/ M1z Moz \
113 223 )'33
\ Aa Age /
Ay
and the final state

"
M1

Wz foa \\
Mg+ Byp Ay 4 Dgy Ay + Ay .
Mg+ Myz Ay + Mg, //

Mg + myy
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Next, we write this same operator in the form

()
O([mlamzlams'a]) = O({mg3msamys])
() ’
Mgy — Mgy Mgz — Myg O
®0 Myg — Mgy 0
L Mg — Mg
My —my 00
®0 Mg — Myy 0 ’
L My3 — Nlgg

where we note that the lower patterns are so chosen
that they multiply by addition of their patterns
[appropriate (unique, therefore known) Wigner coeffi-
cients are implied for u-space].

Now, we apply the factorization lemma to each
term in the product above, introducing a complete set
of intermediate (U,.) states between each operator.
The scalar operator O([mggmizamss]) is of course trivial.
The U, operators

(Mg — M3y Mgy — Mgy 0)

and (m,;; — m1y30 0) have no multiplicity ; explicitevalu-
ation, for the special states chosen, shows that matrix
elements in Z-space completely factor into parts
dependent on U, and U, labels separately. It follows
that the - and /-space matrix elements themselves
factor into a single product.

In other words, for this specific choice of -space
states, there exists, by the factorization lemma, but
one operator. We choose to designate this operator by
maximal a,,-a,, labels.

Lemma 9: The Wigner operators (mgmgmsgs) in

by
\m 13

. Myy/

U, under restriction to the U, operators
split completely.

The distinction between this and the previous
lemma lies in the fact that a more general U, operator
is used. The desired result is established by iteration:
For b;, = m;; we determine all maximal (a;;-a,,)
operators. We next apply the factorization lemma,
just as before, except this time b;, = m;3 — 1, and all
maximal operators are explicitly removed from the
relation established by the factorization lemma. By
explicit evaluation of the matrix elements in /-space,
there now exists again but a single factor. This yields
all operators [a;; — 1, a3 + 1]. By iteration we
obtain all operators having distinct upper patterns.

Remark: The existence of the splitting demon-
strated above is familiar in special cases. Thus, for
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example, it is well known that the generators in Us,
when restricted to [20], have zero components on the

operators "
0
/20) {20\

\L/ WA

as the lemmas above require. The net effect of Lemmas
8 and 9 is to assert how this property extends to all
U, operators (in particular, the precise subgroup
operator on which the splitting occurs). Ultimately the
validity of the lemma hinges on the unique multi-
plication properties of the operator decomposition
used, as well as the special choice of subgroups. All
of these features generalize to U,,, but to carry out the

- proof is highly unwieldy without the introduction of
simplifying techniques.

It is gratifying that the operators obtained in this
resolution of the multiplicity are precisely the ortho-
normal operators discussed in our earlier work.2
In particular, the F and D operators used in high-
energy physics are exactly the canonical operators

1 1
/ 11 \ / 20 \’
\2 1 O/ \2 1 0/
respectively.
We have hence proved our desired result for U,,
which we assert as a proposition.

and

and

Proposition 2: The matrix

JZ /{’ 2
F= (F<m).(u)) =flr ¥ 4
m m} m”

20 The techniques of the present paper are a great deal more
convenient than the earlier technique involving conjugation. In
particular, the operators appear correctly orthonormalized—
automatically.
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is a unique Wigner coefficient defined in the group Use
labeled by two Weyl subgroup decompositions of
U; % U;. The Wigner coefficients of U, are precisely
the eigenvectors of the transformation which brings
the matrix F to diagonal form. This diagonal form
exists since the matrix F has precisely N degenerate
but nonzero eigenvalues, where N is the intertwining

number I([2"], [A] ® [A']). The operators corre-
sponding to a degenerate eigenvalue split completely
upon restriction to appropriate operators in U,. The
Wigner coefficients so defined are orthonormal and
unique to within ordering, and canonical in the sense

of equivalence classes of Weyl decompositions.

The generalization of this result to U, is to be
presented in a subsequent paper.

Let us note that it is now a straightforward matter
to determine explicitly not only the Wigner coefficients
but also the complete family of coefficients denoted
by “3n — j symbols” in SU,. For this purpose the
boson calculus of the {a’} is ideal (see for example,
Louck, Ref. 3), and if one combines the boson
calculus with the pattern calculus of hooks, great
simplifications can be made. These techniques are to
be discussed systematically elsewhere.
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The integrability conditions of conformal motions are written in the null tetrad formalism of Newman
and Penrose. The maximum order of the group of conformal motions admitted by nonflat empty space-
times of given Petrov type is shown to be at most one greater than the maximum order of the group of
Killing motions. The symmetries of those empty space-times which possess hypersurface orthogonal
geodesic rays with nonvanishing divergence are determined. Among these space-times is one of type I
which admits a group of Killing motions of order three. This provides a counter example to a résult of
Petrov which states that the maximum order of the group of Killing motions for such space-times is two.

1. INTRODUCTION
TETRAD of null vectors /#, n*, m#, and m*, with
I*, n* real and m* complex, satisfying
n, = —m'm, = 1,
all other contractions being zero, have been intro-
duced into space-time by Newman and Penrose.!

Tetrad indices m, n, +--, are introduced by con-
tracting tensor indices y, », * - -, with the array

Zpy =, n,,my, 1)
These indices are raised and lowered by the “metric”

0 1 0 0

o | 0 0 0
Nmn = 7 - 0 0 0 —1
0 0 -1 0

Certain linear combinations of the Ricci rotation
coefficients? y™ _ are used, namely,

K=Y, T= —Yur, €= 3121 — Yaa1)s P = V121>
A= —You, & = 3(Y120 — Vaaa)s 0 = Y1335
B= ~Yaus> B = 3y1es — Vass)s ¥ = —Vass,
7= (V12 — Yasa)y and 7= 1yyg.

These are known as the spin coefficients. If the
congruence defined by /* is geodesic, then « = 0.
In this case p + p, |p — pl, and |o] describe the
divergence, rotation, and shear of the congruence.?

The tetrad components of the Weyl tensor are
written as linear combinations of five complex
scalars y,, - * *, 4. The null tetrad can be chosen so
that the y’s take a canonical form as in Table I.

1 E. Newman and R. Penrose, J. Math. Phys. 3, 565 (1962).

2 L. P. Eisenhart, Riemannian Geometry (Princeton University
Press, Princeton, New Jersey, 1925).

3 R. Sachs, Proc. Roy. Soc. (London) A264, 309 (1961).

A null geodesic is called a geodesic ray if the
tangent direction at each point is a principal direction
of the Weyl tensor.® Hence /* is a geodesic ray if and
only if p, = « = 0. Goldberg and Sachs have proved
that a shear-free geodesic ray in empty space is a
repeated principal vector and, conversely, a repeated
principal vector is geodesic and shear free. Hence

o=y, =0 ifandonlyif ¢=«=0,
Ys=9, =0

The tangent vector V* to the trajectory of a
conformal motion of space-time satisfies the equation?

(1.1)

where £ denotes the Lie derivative, g,, is the metric of
the space-time, and ¢ = V* . The first set of integ-
rability conditions of this equation is

ifand onlyif 2 =19 =0.

% Euv = 2¢guv s

£C,% =0, (1.2)
% Cvu). = _Cvu).l (f),x’ (13)

where C * is the conformal Weyl tensor of the
space-time and C,  is defined in terms of the Ricci
tensor R,, and scalar R by
Cor = =Ry + %gl[I‘R;"]
Two special types of conformal motion exist. If ¢ is
a constant the motion is a homothetic motion, and if

TasLe L. Canonical forms for each Petrov type.

type principal vectors canonical form

I Ln Yo = ¥, = 0, Y15 # 0, 993 7% 16y,y,
Il Lin Yo=p1 =y, =0, 93 #0

D Ll n n Yo=Y ==y, =0,9, #0

181 Ll Ln Yo=Y =9 =y, =0,p; #0

N L Ll Vo= =9 =9=0,yp,#0

4 K. Yano, Theory of Lie Derivatives (North-Holland Publishing
Company, Amsterdam, 1955).
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¢ is zero the motion is a Killing motion. Killing

motions which generate the symmetries of the space-

time?* are used in the later sections of this paper.
Equations (1.1)—~(1.3) in the tetrad notation become

Vm;n + Vn;m = %‘ﬁnmn + Vs(ymsn + ?’nsm)’ (1 ‘4)

C‘mmla;s Vs+ CS"PGVS;M
+ CmsmVs;n + Cmnsanv + CmnpsV‘?a
= 3Crnpe® + VICrnpe(¥m's + ¥'sm)
+ Crrod¥a's + ¥'sn) + Counrd¥o's + V'ep)
+ Connpl(¥e's + 77, (1.5)
Cmma;sVs'*' Csans;m + Cmsszs;n + Couns Vs;p
= = Cony"b.e + VICrns(Vr's + ¥'sm)

+ Cmrp(?nrs + y; ﬂ) + Cmﬂf(yﬁrs + yrsp)]' (1'6)
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These equations are used in the next section to prove
the following two theorems.

Theorem 1: A conformal motion of nonflat empty
space-time must be homothetic, unless the space-time
is type N with hypersurface orthogonal (twist free)
geodesic rays.

Theorem 2: For each Petrov type the maximum
order of the group of conformal motions admitted in
nonflat empty space-time is at most one greater than
the maximum order of the group of Killing motions.

In the following sections the equations are solved
with ¢ =0 for those space-times which possess
diverging hypersurface orthogonal geodesic rays.

2. MAXIMUM ORDER OF THE GROUP OF CONFORMAL MOTIONS ADMITTED
BY EMPTY SPACE-TIMES

Equations (1.4)-(1.6) in empty space can be written explicitly as

VoDy, + ViAp, — Va&l’z — Vioy, + ‘12‘?5'/’2 + (5 Ve — AVy, + 0V, — DVy)y,

V1A, + Vo Dy, — Va&l)o — Vidy, — %‘M’o + 2y(DV, — 8V,) + 29,(6V, — DVy)

V1A'/’4 + VyDy, — Va&h — Viby, — ddy, + 2y AV, — 0V,) + 2y5(8V, — AVy)

DV, = (e + &V, — kVy — «V,, (2.1a)
AVy= —(y + PV — vV + 9V, (2.1b)
V= AV, — oV, — (@ — p)Vs, (2.1¢)
AV, +DVy— b=+ DV —(e+ Vo + (7 — DV + (7 — DV, (2.1d)
Vi+ DVy=@ + B+ WV, — «Vy + (6 — é — p)Vy — oV, (2.1e)
6V2+AV3=’7V1_‘(6‘+/9+T)V2+C“+V_'}7)V3+ZV4, (2.1f)
Vs+Vi+id=@+DVi—(p+pVe+ (x— Vs + 3= p)Vs, (2.1g)
=+ Qr+F—a—HV,— W+ (@ — 7+ a— 2wVl

+plG+ B —2r— DV — Vot Qp— 5 — e+ Vs + oV), (2.2a)

=29y — W1+ (e —é+ PV + (m — 20V + (7 — & — BV,]
+2plE+B—7 =2V, —kVo+ QRp—p+ é— e)Vy+ aV,], (2.2b)

= 2"/’4[(?7 el i ﬂ)Vl + (P - 2€)V2 + (“ + B — AV + (2/3 - 7')V4]
+ 2V + Qe+ F—a =BV — W+ (v — 7+ g — 20V, (220

ViAy, + VoDy, — V3by, — Vb, — pAV, + wi(DVy — 8V,) + 9y(0V; — 2DVy)

=l(m + AV — AW+ (y — 7 — V] + w2y —
+yl@+ f— 27 =30V, — «Vo+ Bp — p — 2 + 28V; + 20V],

wWVi+(e— e+ p)V, + (7 —20)Vs + (F—a—p)V,]
(2.2d)

ViAy, + VoDyy — Vss'l’s — Vydp, — v, DV + py(AV, — s Ve + 1/’2(5 Ve, — 2AV))
=pl—GF+ I+ E—e+pVat+ oVl +uF—y—@DVi+(p =29V + (@ + f— Vs
F+ B =WV +wbVi+Gr+27—a— BV, — 24V + 2y — 27 + g — 3wVi], (2.2¢)
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¥ D¢ — 164 = 0,
PoAd — yydd =0,
¥06 — p1Ad =0,
206 — p;D¢ =0,
v1D¢ — podd = 0,
PsAd — pidg =0,
PAd — y,0¢ =0,
WD — py6¢ = 0.

IN EMPTY SPACE-TIME 703

(2.3a)
(2.3b)
(2.3c)
(2.3d)
(2.3¢)
(2.3f)

(2.39)
(2.3h)

In the above, D, A, §, and § are the intrinsic derivatives defined by Newman and Penrose which satisfy the

commutation relations

AD — DA =(y + 7)D + (¢ + A — (7 + @5 — (F + 7)4,
0D—-Dé= @+ f— 7D+ kA — 06 — (5 + ¢ — &4,
A —AS=—iD+(r—a— A+ 15+ (u—y + p)5,
0 =88 =@—wWD+G—pA—E—p)—(f— s

If the space-time is not of type N, Egs. (2.3) yield
D¢ = Ad = 6¢ = 0. If the space-time is of type N,
then the equations yield D¢ = d¢ = 0 (the canonical
form for the ’s is used in each Petrov type). Putting
¢ in Eq. (2.7) gives

(p — P)A$ = 0.

Hence if g # p, A must be zero. Now D¢, Ad, and
d¢ are all zero only if ¢ is a constant and the motion
homothetic. Hence Theorem 1 is proved.

The order of the group of conformal motions
admitted by a space-time is equal to the number of
independent solutions to (1.4)-(1.6) and subsequent
integrability conditions considered as algebraic equa-
tions in the unknowns ¥V, V..., ¢, and ¢ ,, .+ If ¢ is
a constant, there can only be one more independent
solution to the equations than in the case ¢ = 0. This
therefore proves Theorem 2 for all but type N space-
times with p = p.

It remains to prove Theorem 2 for type N space-
times with p = p. In this case Egs. (2.1), (2.2¢), and
(2.2c) are used to obtain all derivatives of V,, in terms
of AV,, V,,, and ¢. Substituting ¥, in Eq. (2.4) then
gives A¢ in terms of AV, V,,, and ¢. The maximum
possible order of the group of conformal motions is
therefore 2 + 4 + 1 = 7. This completes the proof
of Theorem 2.

5 L. P. Eisenhart, Continuous Groups of Transformations (Princeton
University Press, Princeton, New Jersey, 1933).

(2.4)
2.5)
(2.6)
Q.7)

3. EMPTY SPACE-TIMES POSSESSING
DIVERGING, HYPERSURFACE ORTHOGONAL,
GEODESIC RAYS

The space-times of this section are characterized
in the tetrad notation by

po=k=0, p=p5#0.

There are three distinct classes:

Class A: p?# 06 # 0 (Newman and Tamburino:
spherical class)$;

Class B: p? = 66 # 0 (Newman and Tamburino:
cylindrical class)®;

Class C: ¢ =0 (Robinson and Trautman).”

These metrics have been found by Newman and
Tamburino®® using the coordinate system first
introduced by Robinson and Trautman.” In this
coordinate system the tetrad vectors become

I* = 6%,
n* = 6! + Uds + X°0,
m* = wdh + &%},
where « = 3, 4. Equations (2.1) are now solved with
¢ = 0. The resulting Killing motions are of physical

8 E. Newman and L. A. Tamburino, J. Math. Phys. 3, 902 (1962).

7 1. Robinson and A. Trautman, Proc. Roy. Soc. (London)
A265, 463 (1962).

8 L. A. Tamburino, Ph.D. thesis, University of Pittsburgh (1962).
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importance since they describe the symmetries of the
space-times.

4. SPACE-TIMES OF CLASS A

The metric of this class is

m_ _ 200D oL 2PAQC+ DY) artA)
g = R2 A R4 R4 »
L (r—2a) (r—a)
= = 4420y 3(—_ - )
8 GZ)'X 24° 2a°R? R*
L (r+2a (r+a
24 4A2 §.4 = _ _ ,
g (LD (2a3 T = )
o 2D 20
(r+ a)Z’ (r__‘a)g’
12 _ 1, g34 = gxs = g14 =0,
where
t=u xX*=r, *+ix*={ R:*=r’-d’
L=tlog, (*2), o= 4!
r—a
with

A= Bu or B (Bisa real constant).

The spin coefficients used in the calculations are

e=x=mw=0, r=a+ 0,
p= —r[R% o =alR?
'PlL" 1 [r 0 (-o w‘f”
—tre +agx ——|\ |,
"=k TR 2a?
°L
ﬂ=-——2%lR—2— [ra’ + ax’]
4o rifyy Lyl | ray |yl
"~ 4a°R®  24°R®  R*  24a°R*’
y = rCyip | ¥l ®L | aLr (y15° — 97a”)
4a’R®  4a4°R? 2a°R?
4 Luidh w‘l’v‘)‘l’[i o :l
2a°R? 44® [ 24> 2aR?
1 _
+om B‘ a(yls® — w‘l’a°)}
where

v =240D%, o = ¥t
The “metric variables” used are
w = —wlL/Za + (ro® — a@")R?, o® = —ALDAE,
= (rE% — af)R?, £ = —ig" = p = ({1
Since y, = 0and y, # 0, Eq. (2.2b) becomes simply
8Vy— DVy= —1V, + pVs + V.  (4.1)
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Equations (2.1a) and (2.1¢) plus (4.1) yield
V= Vi
and then from (2.1e) minus (4.1)
Vs = (piVirL[2a°) + a°r + ad® — (y1V4/24%),

where a° is independent of r. The imaginary part of
(2.1c) yields

§°°’a° — £%3° + 3ayY/4a® — 3a°p{4a® = 0,

£%3° — £%9° + 3a°97/4a® — 3a’ylf4a® = 0,
while the real part of (2.1c) yields

= rl(—~ "P(l)le - @ngl)/“as

— Ly9iVi/4a* — L(@°3 + a®9))/2a

+ r(2aVia, — a®p) — a’yY)/2a*

+ (—2a%%? — 2a%a°P + Viplid)/dat

+ Lr(—2a%a’y) — 2a%a%p? — Viyloy)/da®

+ R¥(—4a°6%a’ — 4a%£%3°%, — 3a%y) — 3a°%Y))/8a°
Equation (2.1d) gives

£%a°% + £%3°% + 3ayYf4a® + 3a°1pf/4a =0, (4.4)
—dV,/du — Vla,l/a + @%;q/2a® + a’pY2a® = 0. (4.5)
Equations (4.2)—(4.5) are consistent only if

a®=0 and V; = const AL

(4.2)
(4.3)

There is therefore at most one Killing motion.
Furthermore, substitution into (2.1g) yields

Via; =0,

and so the Killing motion exists only when a, = 0.
In this case the coordinate x! is ignorable and the
Killing motion generates the consequent symmetry.

5. SPACE-TIMES OF CLASS B
There are two metrics for this class

(a) v, # ¥, (see Refs. 6, 8),

gu = —4a%(cenfay)log, r)?

— [e + a? log, (r¥cn*ay)}/cnay,

g12=1, g3 =2gu=0,

813 = —4Y[r + 4a*u(cn®ay) log, rl,

8 = —2cntay) log, r,

8as = —r¥2 — 64a*Y*?/cn?ay,

g3 = —8uYcn*(ay),

8u = —cn¥(ay)/d’,
where x! =u, x2=r, x> =y, cn(ay) is an elliptic
function of modulus « = 1 /\/ 2 and
if y>0,
if y<0,

a(l — cnfay)t  +
2/2en(ay) = -
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with g and e arbitary constants.
(b) p;, = 9, (see Refs. 3, 6, 8),
gu = —[x + log, (r*y")],
gis =2rly, g=—1
gas = —r% gu= —)%,
814 = 823 = 820 = 8aa = 0,
where « is an arbitrary constant.

Equations (2.1) are solved for these two space-times
in a similar manner as in the previous section. It is
found that there are two Killing motions for the
second metric (corresponding to the ignorable
coordinates x* and u) but only one Killing motion for
the first (corresponding to the ignorable coordinate

x4).
6. SPACE-TIMES OF CLASS C

The metric of this class is
g2 = 2U°" — 4y — 293/r,
gsa — g44 — —2P2/r2,

gll —_ g13 — g14 —_ g23 —_ g24 — g34 —_ 0,

g12 — 1,

where
U= —P2p2L, 29°= —0L[ou, L =logP,
Xl=u x*=r, x34ix*={ and V =20/0L
P is a real function, independent of r, satisfying the
equation
(0/0u + 6y°)ys = P*P2U° (6.1)
Equations (2.1) together with (2.2) readily yield the
following information:

Vl = g("), V2 = —Ug - I‘g, V3 = ’f(g)/P’
where
_ yie =0, (6.2)
f+f=fVL+fVL + 2gy°* — ¢, (6.3)
fVU° + fYU° = gdU%0u + 2U%,  (6.4)
VP + fry® = gdy*(ou + y% — 38 (6.5)

Equations (6.4) and (6.5) are integrability conditions
of Eq. (6.3).

Equations (6.2)-(6.5) can be solved, but many
different cases arise and, in order to make the notation
concise, it becomes necessary to define several
auxiliary functions. Information is more readily
obtained by adapting the coordinate system to the
Killing vectors. The metric is invariant under the
transformations

u' = s(u), I* = §l*, n* = n"ls, (6.6)

U= hl), m" =e“m*, where = hllhl. (6.7)

r' = rfs,

MOTIONS IN EMPTY SPACE-TIME
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TaBLE II. Canonical forms for the function L.

case set canonical form remaining freedoms

0] g=1 L=L{LD (6.7) and &= u + const.
(ii) f=1 L=L{{-Cuw (6.6) and {'= { + const.
(i) g=2f=1L=L{+u, [+ u) 4’ =u+ const,

{’ = [ + const.

If 9} # 0, then using (6.5) one can set y3 = 1. The
remaining coordinate freedom is #! = u 4 const.
Under (6.6) and (6.7) g’ = g and f' = Af.

Suppose now that a Killing vector exists. There are
three cases invariant under (6.6) and (6.7):

) g#0, f=0; (i)g=0, f#0;
(i) g # 0, f#0.

The coordinate system can be adapted to each case as
in Table II. The canonical form is obtained from
Eq. (6.3). If 930, Eq. (6.2) yields g = const.
By scaling the Killing vector, one can set g = 1.
Hence the above adapted coordinate systems can
be chosen and at the same time y can be set equal
to unity.

Equations (6.2)—(6.5) are now solved for each
canonical form of L. The results are summarized

below.
Case (i) with y; =

If PU® = 0, the metric is of type D.S.” Following
Robinson and Trautman one can set

V2P =1 — UL
Equations (6.2)-(6.5) then yield the four Killing
vectors,
V, = 0L, — U&2,
Vi = 00Lr/P — L3.r|P,
V. = (2 — U%%[P)®3, + (2 — U C%r/P)S%,,
V, =2+ U [P)33, — (2 + UC3r/P)d%,.
If pU*#0, one can set U°= {4+ {. When

VL # VL only one Killing vector exists, but if
VL = VL, two Killing vectors exist, namely,

V, =06, — U, and V, = 6%r/P — {3r/P.
(6.8)
In this last case the field equation (6.1) becomes simply
z = —4e*l], (6.9)

where z = ¢ + { and L is a function of z alone. A
singular solution of (6.9) is

L = }log (z%6). (6.10)
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Case (i) with y§ =
If PU® = 0, the space is flat. If VU 5 0, one can
again set U°= { + {. When L is given by (6.10)
with z = { + {, the following three Killing vectors
exist,
Vm = 6:n - U(S?n,
V= 0%r|P — 33,1/P,
V, = udk, — Uud? — ré%, + 83 r(/P + 8},r(/P.
(6.11)
If L is a function of z alone satisfying (6.9), then two
Killing vectors of the form (6.8) exist. It is interesting
to note that it is the singular solution of (6.9) which
gives rise to the three Killing vectors. Finally, if
VL 5 VL, there can exist at most two Killing
vectors, and if these exist one can set
L =3%logl+ F(z),
where z = ({'+ )/ and
z = 4e*F[(z — DF + F].
The two Killing vectors are
V. =8 —Us,
V= udl, — ulUd% — ro% + 8%rl/P + (4r{/P.
(6.13)

(6.12)

Equation (6.12) has the singular solution
F = }log(z3/6)
and this again gives rise to the three Killing vectors.

Case (ii) with y§ =1
If 2U®° = 0, then (6.1) implies that L is independent
of u, a situation covered by case (i). If I2U° 5 0, then
there exists at most two Killing vectors, and if these
exist L can be set equal to one of the two expressions

L=log({— {) + log F(z), where z=({~— {)e™

or

L = log F(z), where z={— {+ iau.

In both the above, a is a real constant and i = (—1)%.
The field equations in the two cases become

2 2
30 9F = _i6F2; d—zl:Fz - z2(d—1'F - d—Fd—F)}

du du du® du du
(6.14)
=~ 2 2
3ia 4F = —16F3d—[d1d—F - qu- (6.15)
du du®| du du du®

The two Killing vectors are

V,, = 05riP + 85r/P,

V= 00 — UbZ + ar(83,/2P + ar{d} /2P
or

V,, = 63r/|K + 8%r/P,

V,, =064, — Udk + iar{d%/4P — iar{s%/4P.
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Equation (6.15) has the singular solution

F = (—iaz%/4)t. (6.16)

Case (ii) with v = U =0
Since U° =0,
L = iGu)({ — §) + H(u).
If G(u) = 0 the space is flat. Otherwise, one can set

G(u) = u and then there are at most two Killing
vectors. Ir these exist, one can set

H = —2log u + const
and the Killing vectors are
V, = 0%r/P + 63r/P,
vV, =ud) —uUd, — ré% + 63 r([2P + 6% r{/2P.
Case (ii) with v = PU° =0, U° %0
One can set U® = ¢, where ¢ = +1 and then the
general solution to the field equation (6.1) is
P = (e/4v¥)}sinh [u — 2 ei({ — D)), (6.17)
where u and » are functions of » alone. The case
1 = % = 0 has been covered in (i). If not both 4 and #

are zero, then there exists at most two Killing vectors,

and if these exist one can set
v=e"™ and u=2>a,

where @ and b are arbitary real constants. The two

Killing vectors are

V= 03 r/P + 2r/P,
Vi = 05, — USE + 63 r(al — 2iea)/P
+ 3r(al + 2iea)/P.
Case (ii) with v, =0, FU? % 0

In this case there are again at most two Killing
vectors, and if these exist L can be taken in one of the
following forms:

L= —3logu+ F(z), where z=ies ({ -0+ a
(6.18)

or
L = F(z), where z=au+ ({ — Die. (6.19)

In both the above, a is a constant and € = +1. The
field equation takes the form

z = —4e*FF
and has the singular solution
F = }log (%/6).
The Killing vectors for (6.18) are
V= 63r/P + 8%r/P,
Vi = 403, — uUd5, — roy, + 03,rl/P + &%,rf/P.
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The Killing vectors for (6.19) are
V,, = 05r[P + 8%r|P,
V= 8y, — UL, — 83 ieralP + 8% ieralP.
Case (jii) with 93 =1 or 3 =VU* =0, U’ =0
The only metrics which admit more than one
Killing vector have already been covered by either
case (i) or case (ii).
Case (jii) with v = U% =0

Now
L=F{+uw+ Fl+u

and the condition for nonflat space is

F +2FF 0.
There are, again, at most two Killing vectors, and if
they exist F can be set equal to one of the three forms:

F= [—ba + bd(a + 4)e2b(u+§)]{a _ adezb(uﬂ)}—l’
(6.20)

where a, b, and d are nonzero constants with a
imaginary and b real;

F=—[al +u]?, (6.21)
where a is a nonzero imaginary constant;
"= —b + de?t), (6.22)

where b and d are nonzero constants with 5 real, In
each case one Killing vector is

V= 6L, — UBL + 63r/2P + 84r/2P. (6.23)
The second Killing vectors are

V,, = —2e*""5), + 2Ue™" 62, + 4bre® 8%,
— 83 re " Pd — 83 re®i/Pd,
V,, = udl, — uU8% — rd2, — 83r(/2P — 820L[2P,
V= 05re%[Pd — 8% re™Pd.
Case (iii) with v =0, FU® #0
Excluding those metrics already covered by cases

(i) and (ii), it is found that if there exist more than one
Killing vector then L takes the form

L = b+ { + 2u)/4 + F(2), (6.24)

with
z = [kbj2d + e-—%b({%»u)}{izblrzc{_{_ e—%b(§+u)]~1,
where k, b, and d are constants with b, d nonzerp and

b real, or

L = F(z) (6.25)

with z = [u + {J[u + L. Both of these metrics admit
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the Killing vector (6.23) together with one other,
namely,

Vo = —28%e b 4 202U P — 82 re-tov
+ 82 rke¥)2dP + 8% rketto2dP
or

Vo = uby, — uUd% — ré?, — 32 r(j2P — 83 rfj2P.

The function F in both (6.24) and (6.25) must satisfy
the field equation

8e*F[F + zF] = 1/d%2® + 1/d> (6.26)

In the discussion of this section emphasis has been
placed on those metrics admitting more than one
Killing vector. It is worth noting that Robinson and
Trautman give examples of metrics possessing only
one or no Killing vectors.

7. MAXIMUM ORDER OF THE GROUP
OF KILLING MOTIONS ADMITTED BY
EMPTY SPACE-TIMES OF TYPE III

Equations (2.1) and (2.2) have been analyzed to
give the maximum order of the group of Killing
motions admitted by empty space-times of each
Petrov type. The results are in agreement with those
of Bialas and Bialas® excepting for type-II and type-II1
space-times. The authors were inclined to believe that
the discrepancy arose because only the flrst set of
integrability conditions were considered. However, it
has been shown that the metric of the last section, for
which 93 =0 and L = }log({ + {)?/6, admits a
group of Killing motions of order three. This metric
is of type III and provides a counterexample to the
Bialas result which states that the maximum order for
type-III space-times is two. The results of Bialas and
Bialas are-based on the work of Petrov.1

8. REMARKS

It is interesting to see how the use of the tetrad
calculus helps in solving the problems discussed in this
paper. Although the first set of integrability conditions
of conformal motions looks formidable, it becomes
quite concise and quickly yields any required infor-
mation when simplified by taking the canonical forms
for each particular Petrov type. It seems reasonable,
having obtained metrics by the tetrad method, to
investigate their symmetries using the same methods.
Here the integrability conditions proved extremely
helpful, and, of course, they would not have been so
readily available using the more usual techniques.

¢ E. Bialas and A. Bialas, Acta Phys. Polon. 24, 515 (1963).
30 A Z. Petrov, Einstein Spaces (Pergamon Press, Inc., New York,
1964).
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For space-times of type I it is found that Theorem 2
can be strengthened so that the maximum orders of the
groups of conformal and Killing motions are equal.

Note added in proof: It has been suggested that the
metrics obtained by Newman and Tamburino® do not
exhaust all space-times containing diverging, hyper-
surface orthogonal, geodesic rays (see Sec. 5). One
of the authors (C.D.C.) has made an independent
check of the calculations and has found that no other
metrics do in fact exist. However, the metric (b) was

C. D. COLLINSON AND D. C. FRENCH

found directly rather than as a limiting case of the
metric (a) and the gy; component of the metric (a)
itself was found to be misprinted in the paper of
Newman and Tamburino. This misprint has been
corrected here.

ACKNOWLEDGMENT
One of the authors (D. C. F.) wishes to express his
gratitude to the Kingston upon Hull Education
Committee for financial support.

JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 8, NUMBER 4 APRIL 1967

Induced Representations of Strong Coupling Groups*

T. Cookt
University of Wisconsin, Madison, Wisconsin, and Argonne National Laboratory, Argonne, lllinois

B. Sakita}
Argonne National Laboratory, Argonne, Hlinois

(Received 27 June 1966)

Mackey’s méthod of induced representations is applied to the strong coupling group G =K - T,
where K is compact and T is Abelian, to obtain the general irreducible representations. The form of the
meson-isobar-isobar couplings is obtained by reducing these, with the use of the Peter-Weyl theorem,
to irreducible representations of the compact subgroup K. The results are applied to the cases: pseudo-
scalar octet mesons, K = SU, ® SU;, T = T,,, and SU; 35-plet mesons, K = SU;, T = T;. Explicit
representations are obtained which are consistent with mass formulas M o fo(u) ~ 7 (j + 1) and

A o« G? in the respective cases.

I. INTRODUCTION

N previous papers!? we have exhibited the group of
the strong coupling theory. The strong coupling
problem is defined by the equations

[Aa! Aﬁ] = Oa (1)
Aﬁz = [Aﬂ ’ ['/K’9 Aa]]9 (23)
Age =T AgA,,. (2b)

In the above all terms are considered as operators on
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the isobar states. A, is the Hermitian source operator
of meson o and hence matrix elements of A, are
proportional to the meson-isobar-isobar couplings.
A factor g2 has been removed so that 4, is finite. M
is a diagonal operator whose matrix elements are
proportional to the isobar mass differences. Here a
factor of 1/g? has been removed so that A is not zero.
Matrix elements of A,, are proportional to the
scattering amplitude® for the reactions meson « +
isobar — meson § + isobar. Equations (2) are called
the “mass condition” because they restrict the form
of the mass operator .. However, for some allowed
mass operators they also restrict the source operators
A4,.

The most general strong coupling problem is then
solved by finding the (matrix) representations of (1)
and (2). By (1) the 4, may be thought of as generators

3 C. J. Goebel, in Proceedings of the 1965 Midwest Conference
on Theoretical Physics (1965).
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of an Abelian Lie group T whose representations are
restricted by (2) for a given mass operator. In
interesting physical cases there exists also a group K
of symmetry operators on the isobar states, which we
assume is a compact group. The mass operator G is
invariant under K. In order that the interactions be
invariant under the action of this group, the source
operators must transform as a tensor. That is for
kekK

3

where Dy, is the fa matrix element of the operator &
in the representation, /, to which the mesons belong.
By virtue of equation (3) if teT and k€K the
operator

Kk =3 D44,

=k tk @)

is an element of T. Mathematically we say that (3)
defines a homomorphism of the group K into the
group of automorphisms of T. Thus, we may define
the semidirect product of Kand T

G=K'T. ®)
Here any g € G may be decomposed uniquely
g =kt

k€K, te T, where k and t do not commute as in a
direct product but satisfy (4) instead.

In this paper we concern ourselves with the case
K = SU, ® SU;, T = T, (octet pseudoscalar meson)
and the case K= SUy, T = T,. In the case of
[SU, ® SUg] - Ty Goebel* has considered a mass
operator of the form®

Mo = aF? 4 bJ® + f; Zﬂ A AyF Fy,

(6)

where J; and F, are the generators of SU, and SUj,
respectively, and

d.2 = % Z AiaAia'

Such a mass operator can be made to satisfy Eqgs. (2)
if we require either (1) a =0, b 4 }A% = (4a?)™?
or (2) a= A3 b+ }A%c = —}A%(4/3a?) or (3)
a = }3a?, b + }A%c = [(3/42) — 12%)(4/3¢?), where A
can be either 1 or 2, and if we require the condition

zf;ﬂveﬁkAiaAjﬂ = }“a;Aky, (7)

ijap

4 C.J. Goebel, in Proceedings of the Conference on Non-Compact
Groups in Particle Physics (W. A. Benjamin, Inc. New York, 1967);
Phys. Rev. Letters 16, 1130 (1966).

5 In SU, ® SUj, the latin indices i, f, k - - - run from 1 to 3 and
refer to the SU, part; and the greek indices «, 8, 7 - - - run from 1
to 8 and refer to the SU; part.
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where ¢,;, and f,, are the structure constants of SU,
and SU;.
In the SUg - T; case the operator A4, is the adjoint
representation of SU;. A mass operator of the form
M oc G2, ®)
where G,, o = 1-35 are the generators of SUs
requires that the source operators satisfy

®

where d,,, are the analogously defined symmetric
couplings for SUs,

% daﬁyAuAﬁ - A‘.mA),,

F=1> 4,4,

and A% equals either 4/15, 1/12, or 0.

Thus the strong coupling problem has been reduced
to the mathematical problem of finding those unitary
irreducible representations of G = K+ T which are
consistant with the conditions on the A’s [Eq. (7) or
(9)]. Fortunately this problem has been solved by
mathematicians® by the method of induced repre-
sentation, the mathematical generalization of the
procedure by which Wigner constructed the represen-
tations of the Poincaré group. An advantage of using
this representation is that its irreducibility can be
exhibited relatively easily owing to the Mackey
irreducibility criterion.® However, the usual basis for
an induced revresentation does not diagonalize the
mass operator. To do this we must reduce the induced
representation to irreducible representations of K,
which is a symmetry group of the isobar states. This
reduction can be carried out by using the Peter-Weyl
theorem’ for obtaining a basis irreducible under K.
The matrix elements of the source operators with
respect to such a basis give the explicit form of the
meson—isobar—isobar couplings. In Sec. II we carry
out this program for a general case. In Secs. III and
IV we apply the results to the specific cases mentioned
before.

II. INDUCED REPRESENTATIONS

The method as it applies to our case is as follows.
Since T is Abelian, any irreducible representation o
of T is simply a character of T’

(U = x (U, (10)

where U? is the base vector of the (one-dimensional)

8 G. W. Mackey, “Group Representations in Hilbert Space,”
Appendix to Mathematical Problems of Relativistic Physics by
Irving E. Segal (American Mathematical Society, Providence,
Rhode Island, 1963). See also R. Hermann, Lie Groups for Physicists
(W. A. Benjamin, Inc., New York, 1966), Chap. 9.

7 See for example, L. Pontrjagin, Topological Groups (Princeton
University Press, Princeton, New Jersey, 1939).
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representation space of «; a is an index to label the
character; and the character x%(t) is a complex-
valued function with magnitude 1 which satisfies the
condition y%(t)x*(t;) = x°(t1¢2). The action of Kon T
[Eq. (3)] defines an action of K on the characters of T
given by
2(ktk) = V(). (11)
The set of all characters which may be obtained by
applying the elements of X to a particular character
is called an orbit of K in the characters. The set of all
elements of K which leaves a particular character g,
unchanged forms a subgroup of K. This subgroup is
called the “little group” K, associated with a, and its
form depends on the orbit of K to which g, belongs.
Let § be an irreducible representation of the little
group K.
Pk Ust = 3 Dl ko) Uke (12)

where the UL form a basis for the representation
space of f, and the Di;.,,(k,) are the matrix elements
with respect to this basis. We can form a representa-
tion of the group H = K,- T by taking the direct
product of the representations « and .

oMU = g,x“(t)@ﬁm(ko) Usyr,  (13)

where h is decomposed & = kyt, and UDE is a base
vector of the direct product space given by Ujh =
U ® U, . Call this representation space U.

Now consider the set of functions g on G which take
values in U and satisfy the property:

w(gh) = o(h)w(g) (14)
for g € G, h € H. These functions form a vector space
V with linear combination defined by

(ay, + by)(g) = ayi(g) + bya(g),

where a and b are complex numbers, since property
(14) is preserved by this linear combination. The
induced representation p of G can be given in this
vector space V by
Py =¥,

where

¥'(8) = yl(g'g). (15)
Clearly, ' retains the property (14), and the action of
p is linear. Also, p(g.)p(g:) = p(g.g1) because

(r(g)P(g)¥)(@) = (p(g)¥)(er78) = ¥(e178:78)

= yl(g=8)7"8] = [plg:81)1(8)-
Since « and f are irreducible, by Theorem 8.1 in
Mackey,® the induced representation p is irreducible
and specified by the orbit determined by a, and the
representation L of K.

T. COOK AND B. SAKITA

Now let K; be a subset of K chosen so that one and
only one element of Kj is in each coset of K/K,. The
set K; does not form a subgroup since K, is not
normal, but every k£ € K may be decomposed uniquely
into

k = kik, (16)
Because of the restriction [Eq. (14)] on v, it need only

be defined on K;. We may define an inner product in
V by the formula

(s 90 = [t i)

and hence, V is a Hilbert space.

By a straightforward extension of the method for
finite groups® a basis for ¥ can be taken as the
functions o}, defined on K, by

yicki(ki) = ki, k)USE, (18)
where d(k,, k,) has the properties of the Dirac o
function, that is,

with k, €K, ke K,.

(17

f,_ dky (ks , k) f(ky) = f(ky).

Using Eq. (14), one can extend these functions to the
whole group G;

z Ok , ky)x o (t YD 4 (ke HUSE

aol,

Vinar(g) = (19)
where g is decomposed g = k,kt. The action of G on
these basis vectors can then be easily shown to be
given by

aol

POV = 3 f dky? 8(k,, KDy (ki Ktk k)

X Dk kKD ey, (20)
where k7 is given by the decomposition
g 'k = kikgt” and g = kt.
Useful special cases of this are:
pUeD¥i%E = vitii @1
plko)yiti = Z Dl arlko)yi%s » (22)
POl = 2" (it - (23)

As we have discussed in the Introduction, we wish
to reduce this representation with respect to the
irreducible representations of K. To accomplish this
we define the vectors

X% M) = f dk DA AK)*p(k)pssE,  (24)

8 M. lyanaga and M. Sugiura, Algebras for Applied Mathemati-
cians (Iwanami-shoten, Tokyo, 1960) (in Japanese).
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where D* is an irreducible representation of K.
Clearly
plk)Xl(»'M) = z Dé(K)XBE"M).  (25)
Thus the vectors X%%(»'M) transform irreducibly
under the action of the subgroup K. However, they
do not form a basis because they are in general not

linearly independent. By the Peter—Weyl theorem,’
p(R)pis7 = 3 N(u) DY, () XH(' M),

uvy’
where N(u) is the dimensionality of the representation
4. Now, using Eqgs. (21) and (22),

P(k)w(llom? = Z‘D{fl'u(ko)'l’;g{fl' s

where k is decomposed k& = k,k,. If we multiply the
right-hand sides of these two equations by DL, (k)
and integrate over K, we obtain

i
—— 0770 = > N(u)D%,.(k
N(L) LL 92 'Pkl e “% (w (ki) 2

x [ f dkoDenv.(koxD{m(ko)*} X' M). (26)

To evaluate the integral of Eq. (26) we must investi-
gate the way in which K, is contained in K. The
components of an irreducible representation u of K
have been specified by ». Since K is a subgroup of K
the index » may be written (£LAM), where L, M
specifies the base of an irreducible representation of
K, and £ specifies irreducible representations of a chain
of subgroups of K which contain Ky, i.e.,, K> K' >
K"--+ > K,. Then the matrix Dz (k) restricted to
K, can be written

Dl parveran(ko) = 0p:01 (D (k). (27)
Thus we can do the integral of Eq. (26) and obtain

N1} .
w‘i‘:fiz = gg [N(Lﬁ_;:i D¥eran(k) ek, (28)
where

¢k = IN@WNDPXSHELMM],  (29)
and that X%’ [(LM)M] is independent of M. From
the definition of X [Eq. (24)] we have

noL

(loL
Yry a1 -

N
ook = f dkl[N((g] D eran(ky)*

One may derive the expression

(30)

|| D0 60" D a0
o

1
= —— 0.0y E Dferark)* D% par(ky).

N(L)
(31)
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Using this it is easy to show that the $%l are ortho-
normal so that they form a basis for the irreducible
representation (g,L) of G, which exhibits explicitly
the reduction into irreducible representations x of K.
Considering carefully the nonzero coefficients of
Eq. (30) we see that the representation (¢,L) contains
those representations, u, which have a component
(£LM) and with multiplicity given by the number of
different values that £ may take on for the same L.

Now, to obtain the explicit form of the physical
couplings, we wish to construct the matrix elements of
the source operators in the above representation. The
action of A4, on the y’s is implied by Eq. (23)

Aaw‘i‘i’u =a (kl)wh A
Also a(k,) may be expressed in terms of g, by means
of Egs. (3) and (11)
a,(ky) = % Dalzﬂ(kl)*(ao)p-

Using the expansion coefficients of Eq. (30) and the
above expressions we may write:

ao aols N( )
@l At =3 | dk[ 4

. (LJ D¥ep an(ky)

v
x DiAkﬁ*(a@,{Mﬂ D¥ep an(ky)*.

With the use of Eq. (31) and the definition of the
little group the region of integration may be extended
to all of K. Then using the well-known results that the
integral of three D’s is two ““3-j” symbols we have

($i7s, ABnE) i
= NN alp'v'(§' LM)] E(M l M)
7 Y o vy
g
32
EFLM) B (ELM)) 2

()

is a “3-j” symbol [symmetrized Wigner coupling
coefficient] for K. Here p is used to distinguish
different ways of coupling the same representations
', I, u. The phase o is given by

Dy (k) = o(uw') Dl (k)*.

The expression is independent of M. This is not
obvious since it comes from the nature of (a,),.

xS u),,(

where

L [SU, ® SUg] - Ty,

In this case, the characters of T}, are specified by
24 numbers. Thus, the index a should be taken to be
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a 3 x 8 matrix whose components a,, are the values
of the generators 4,, in the representation given by
Eq. (10). The action of K on the characters is given by

a(k) = 3. DE%u(K)* (@i (33)

Here 1, 8 stands for spin 1 (p-wave), octet. If now we
make the restriction of Eq. (7) on the generators, we
restrict the characters by the condition
D Japy€inia0sp = Aoay, .
ijaf

This condition restricts the character to two orbits of
K which are distinguished by the two values of 4. To
show this we consider the 3 X 3 matrices

ai = Z Aaaia ’
a

where the A, are the usual Gell-Mann matrices.
Condition (34) is then equivalent to the condition

(34

l[a;, a,] = idx Z €9 -
P

Thus the matrices (1/Ax)a; form a three-dimensional
representation of the Lie algebra of SU,. It is well
known that there are only two Hermitian, nontrivial,
nonequivalent, not necessarily irreducible three-
dimensional representations; i.e., 2®1 and 3.
Equivalent representations correspond to points of
the same orbit since a unitary transformation on the
a; matrices is the same as the action of the corre-
sponding element of SU; on the a,,. Thus, we have
two orbits and can choose g, to be given by either

(ap); = Aadh, (i=1,213)
or
(ap), = Aady, (G5)y = Audy, (ag)s = AaAq.

Consideration of ,Tr(a;a;) shows that in the
former case A = 2 and in the latter A = 1, so the two
orbits may be distinguished by A. Finally we have for
A=2

(@)ia = a0y, (35)

and for A = 1, (@phe = &, (Gp)2s = &, (4g)s7 = «, and
all the rest are zero. In this paper we consider only the
case 4 = 2,

By careful consideration of the Lie algebras® in-

% If we consider the commutators of the 4,4 with v; (i = 1, 2, 3)
and Y evaluated at the point defined by Eq. (35) we see that the
algebra of the little group contains that with basis v; and ¥, since
[Aia, v)l4,y=ad;y =0 and [Asa, Y]a;,=as,, = 0. The orthog-
onal complement of this algebra in the algebra of SU, ® SU,
reduces into three components whose bases form irreducible tensors
under the action of this algebra. These are (J; — I, i =1, 2, 3);
(Fy + iFs, Fg+ iF;); and (Fy — iF;, Fg— iF;). If each of these
is adjoined to the above algebra they produced an algebra which is
larger than that of the little group, since [A,3, /)| 4, =as,, = i
and [A4,,, Fy + iFlS]IA.'a:“"ia = —jiko. Thus, assuming the little
group is a Lie group we can conclude that the little group is
generated by v, and Y.
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volved we can show that the little group in this case
is generated by

v,=J;,+1,, where I,=F;,, i=1-23,

and

Y = QNI (36)

Let us note it by (SU,), ® (Up)y, where the sub-
scripts refer to the generators. A sufficient chain to

specify £ is
(SUz)s ® (SUs)p = (SUy),
® (SU)1 ® (Ui)y = (SUp), ® (Upy -

Only the invariant [, of (SU,); is not otherwise
specified and it may be used for £.
In this notation Eq. (30) becomes

T NN}
¢1’u£vlo = g dkl[m—J
X D 1ov o (k) piiwe.  (307)
Here j, m refer to a representation of SU, and y, » to

SUs. If we recouple v, v; to j and I, using Eqs. (36)
Eq. (32) becomes!?

((ﬁ?al:r?l'v’lo’ s Aiz¢?znyzsla)

= [(2f' + 1)) + DEN@)N@wE

v jy[e 8
T \—m’' i m/\¥ a v/,

X (_)(:i—a’ +I—1I, +v)(_)(m +I3) X 0,(1;, Y, I(;’ Yo)

s j oI v
X txl: # 8 # }{ 0 ],
(]o, - o) (1’0) (Io’ Yo) b4 10 J 1

where the index » has been decomposed in the usual
way into I, I3, Y;

is a ““3-j” symbol for either SU, or SU,;

]

is an isoscalar factor for SU;;

L)

is a “6-j” symbol for SU,; and o is a phase defined by

(329

Di(k) = ()55 o(I', Y', I, Y)DEL)*,

10 Here we have slipped into spherical notation for the indices
i, o In this notation (ae)iq = (—)*8;~4, where the index « refers
to the /; value for the /= 1 part of the octet, (a0)iqy = O for the
other components of the octet.



INDUCED REPRESENTATIONS OF STRONG COUPLING GROUPS

The expression for the mass, Eq. (6), becomes in this
representation for case 3

Mo = (230D folw) — §laj(j + 1) + b' LI, + D]},

€
where @' + b' =1, &’ — b’ is arbitrary, and fo(u) is
the value of the second-order Casimir operator of
SUj, in the representation .
In the case v = 0; j = I, and the mass is

Mo = 2[3e3)[ o) — £j(j + DI (38)
This mass formula is explored in detail in the reference
of Ref. 4.
IV. SU;- Ty

The characters of Ty, are specified by 35 numbers
or a 6 X 6 traceless matrix ¢ whose components a;;
are the values of the operators >, D¢(G,)4, in the
representation of Eq. (10). Any such matrix a may be
diagonalized by the action of K on the characters.
Thus the orbits of K in the character space are
specified by the eigenvalues of a. This is a great
simplification over the case of [SU, ® SU,]- Ty
since we now know the most general orbit. Thus a,
may be taken in general to be

(a0)i; = b5, (39)
The restriction (9) on the generators requires that a
have only two-distinct eigenvalues. There are three
possible @, which satisfy this condition. These three

cases, along with the associated little group, are given
below.

Case (a)
A% = 4/15,
a, = (5/6)}a,
Ay = 4y = a4 = g = Qg = "%(5/6)%0‘-

The little group is the U; ® SU; subgroup generated
by

6
X Xy — %5”22ka, i,j=2—6,
k=
where the generators of SUj are written
X = Z ij(Ga)Gu'

Case (b)

a; = a; = (%)%“,
a3 =4, = ad; = Qg = _%(%)i“-

The little group is the U, ® SU, subgroup generated
by

6
Xy =125 Xy~ 16,3 Xp, i,j=3—6.
=3
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Case (¢)
A=0,
a, = a, = a; = (3%,
a, = a5 = ag = —(})}«.

The little group is the U, ® SU, subgroup generated
by

6
X Lj=1-=3; Xij—%éijzxkk, i,j=4—6.
k=4 :

We consider only Case (a). The induced representa-
tion space is spanned by

ApS

'(pkla"
where p is an irreducible representation of SU; with
components indexed by ¢ and s specifies the repre-
sentation of U;. In this case, the little group is a
maximal subgroup, and hence the index & does not
appear. Equations (30) and (32) become

b3
0w = fdk[%ﬂ D¥ o (k)yles (307)

and

(4225, A,4%%%) = IN(WIN(u) ol (pso)]
ao3s /t)

xZ(_,
? 4 oL v

T (R e
(pso) (100) (pso)/,

If we use the notation of Young’s diagrams to
specify the representations of SU; and SU, [example
(MAsAsdy) and (A,42454445), where 4, > 2, > -+ 2> 0]
we can show that the only representations which
contain the 56 representations of SU, are

(a) p = (0000), s= —15/2,
(b)  (1000), —9/2,
©) (2000), —3/2,
(d  (3000), 3/2.

Of these only (a) has no state of mass less than the
mass of the 56. This representation gives the spectrum

u N@ 26
(30000) 56 45
(51111) 700 57
(72222) 4536 125
(93333) 20580 177
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For an arbitrary compact group it is in general not possible to choose the 37 symbol (_[1j2j3),,ml,,,z,,.3 such
that its absolute value is invariant under every permutation of the j/’s and of the corresponding m’s.
Still, it is commonly assumed that for SU(3) such a choice is possible. In this paper it is shown that

this assumption is indeed justified.

1. INTRODUCTION

OR the group SU(3) it is often stated that the
3j symbol (1 jz js)y.m m,m, €2 be chosen such that
its absolute value is invariant under every permutation
of the j’s and of the corresponding m’s.! However, this
statement requires proof for every particular group
since it has been shown to be false for S; (the sym-
metric group on six symbols).2 The purpose of this
paper is to show that for SU(3) the statement is
indeed correct.
We first recall the definition of the 3j symbol
(J1J2J8)r.m,m,m, fOT an arbitrary compact group® G

jl(R)mlml’j2(R)m27n2’
= z [13]{(11.’2]3)1" mymsg mg} *ja(R)m;:nal(jlj‘Zj:l)r. my my’ mg’’
i3
(1

where a sum is implied over repeated m and r indices.
Here [ /5] is the dimension of j;, j(R)™,. = {j(R),,™}*
are the matrix elements of the irreducible representa-
tion j of G, and R e G. The index m is a generalized
magnetic quantum number and r is a multiplicity
index which takes on as many values as the multi-
plicity of jf in the Kronecker product j; X j,. Using
the orthogonality relations for the irreducible repre-
sentations, one obtains?

[ RY™iRY™, aR
= {(j1j2j3)r.mlmgms}*(jl.i2j3)r,ml’nlg’ms’ 1l (2)

where the integral has been normalized to { dR = 1.
Also, from the definition of the 3j symbols and from
their unitarity it follows that

(jlj2j3)r. mlmgm;;jl(R)mlml'j‘z(R)mzmg'j3(R)mam;;'
= (j1j2j3)r, my mg my’ (3)

* Post-doctorate fellow of the National Research Council of
Canada.

t Present address: Département de physique, Université de
Montréal, Montréal, P. Q. Canada.

1J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).

2 J. R. Derome, J. Math. Phys. 7, 612 (1966).

3 J. R. Derome and W. T. Sharp, J. Math. Phys. 6, 1584 (1965).

4 W. T. Sharp, Atomic Energy of Canada, Ltd., Report AECL~
1098 (1960).

For the sake of brevity, we say that the 3j symbol
(J1J2J3)r,m m,m, €an be chosen in symmetric form or
can be symmetrized if

l(jlj2j3)r,mlm2m3| = l [W(jljzj:i)]r,n( mlmzmz)l’ (4)

where 7(j, j»/3) can be any permutation of j, j, j; and
m(mymymy) is the same permutation of mymymy, that
is if Eq. (4) holds for every = in S;, the symmetric
group on three symbols. In a previous paper? we have
shown that if the 3j symbol (/, j, J)r.m m,m, €ANNOL be
chosen in symmetric form, then j, j,j; are equivalent
representations, Thus, in this paper, only 3j symbols
of the type (jjj)r,m,m,m, need be considered.

2. SYMMETRIZATION CONDITION IN TERMS
OF CHARACTERS

It follows from Eqs. (2) and (3) that the unitary
matrix

M(”)rr’ = {(jjj)r’.mnnyng}*(jjj)r.fr(mlmzmg) (5)

satisfies the following equation:
(jjj)r,n-(;n17n27n3) = M(ﬂ)rr’(jjj)r’.mlmgmg . (6)

From Eq. (6) one sees that M is a representation of S,
and that the 3j symbol ( jjj),.ml,,,z,,,3 can be chosen in
symmetric form if and only if the matrices M(=) can
be diagonalized simultaneously. Now, the arbitrariness
in the definition of the 3/ symbol ( JiDr.mymym, implies
that the matrices M(r) are determined only up to the
similarity transformation

M(r) = UM(m)U,

where the unitary matrix U must be the same for
every 7 € S;.% Thus the 3j symbol (jjj),,,,llmQ,,,a can be
symmetrized if and only if [21] (the only irreducible
representation of S; of dimension larger than one) is
not a constituent of M, that is, if and only if the
multiplicity of [21] in M is zero. The multiplicity of
[21] in M is given by

m(M, [21]) = & 3 412y M),
3' 7eS;
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where y() = trace M(x) and x*(x) is the char-
acter of {21]. One obtains

m(M, [21]) = ¥{m(j X j, *) — 2™ (D]},

where m(j % j,j*) = | [x(R)*dR is the multi-
plicity of j* in j X j, and where “(3)” denotes the class
of S; consisting of the two even permutations (123)
and (213). Explicitly *[(3)] is given by

M3 = M(123),) = M(213),
== {(jjj)r,mlmgmg}*(jjj)r,mgmsml

= [ J(R) ™y i (R)™ 1y J(R) ™y AR

= | Y (R¥ dR.
Thus

m(M, [21]) = %{m(j X J, %) — f V(R dR}, ™

and it is possible to choose the 3j symbol (jjj),. m,m,m,
in symmetric form if and only if

m(j % j, j*) = f ¥(R%) dR. ®
We have already shown? that, for the irreducible
representation of dimension 16 of Sg, Eq. (8) is not

satisfied. We now show that Eq. (8) holds for every
irreducible representation of SU(3).

3. SYMMETRIZATION OF THE 3j SYMBOLS
FOR SU(3)

Let {Au] stand for the irreducible representation of
SU(3) which corresponds to the Young diagram of
(A + p) boxes in the first row and u boxes in the
second row so that the complex conjugate of [Au] is
[#4]. The multiplicity of [#4] in [Au] X [Au] is easily
found to be [1 + min (4, #)}.° Thus

m({4, ] % [4, p), [4, u]*) = 1 + min (4, p).
To evaluate the integral § y**1(R®) dR we use the
following expression for the characters of SU(3)

4738

[l ;4](E 62) __z Z z €l+u—r~—2s—t u+'r-——s—2t

7=0 3==0 =0

where €€, are two of the eigenvalues of the group
element R. If R is in the class labeled by ¢;¢, then R®
is in the class labeled by €€l so that

x“'"](Rs) — [l,u](€3€3)

5 B, Preziosi, A. Simoni, and B. Vitale, Nuovo Cimento 34, 1011
(1964).

B ptr—s
z z 3(l+u—~23—t) 8(u+r——s—2t)
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Using the normalized invariant measure for SU(3)

dR = (1/3=%)[1 — cos (« — BT — cos Q. + B
X [1 — cos (28 + o)) du df,

where « = argey, f=arge, and —nv £ «, § € =,
one obtains

f ¥ R% dR
..1_

?M»
i Mw

b
2 J' Smegdnb[] — cos (o — )]

cos 2o + M1 — cos (28 + )] da df,
9

where m-l+,u~—r~—2s—t and n=pu 4 r—
s — 2t. In view of the fact that

A g oprr—s . . . )
z E eSzmme31nBe—zPae—1Qﬁ da dﬂ
=0 3=0 {=0

3n®
><[

™M

may differ from zero only when both P and @ are
multiples of 3, the right-hand side of Eq. (9) becomes

Hopetr—s

—“ZZZ

472 70 5=0 (=0

x {1 + %{cos 3(« + f) + cos 3x + cos 381} da dp

B pr—s

=,§ Z > F(m,n),

4 =0

3:ma 3z’n6

where
F(m, n) = 8(m)d(n) + 3{6(m + 1)d(n + 1)
+ 8(myd(n — 1) + 8(m — D)} + 3{6(m — 1)
X 0(n — 1) 4+ d(m)d(n + 1) + 6(m + 1é(n)} (10)

and

dxy=0, if x#0,
=1, if x=0.
Sincem+n=2i+2p —3Hs+1)=(1~ pgymod3,
the sum
A B opdr—s
Gp.g)=2 2 2 8(m— p)d(n — q)

r=0 =0 t=0

is nonzero only if (p+g=@A—wmod3. If
4 = u mod 3 only the first term on the right-hand side
of Eq. (10) contributes to the sum. If (A —u) =
1 mod 3 only the next three terms and if (A — p) =
2 mod 3 only the last three terms contribute.

Suppose (A — u) = (p + g)mod3and u > 4. G(p,q)
is then equal to the number of terms in the sum for
which m = p and n = q. Since our values of p and ¢
always satisfy the inequalities

—~1<&p,g<1 and pg>0,
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it follows that
0Ls=322+p~-2p+q—r<y,
0Lt=3pu—-A+p—29ql+rlu+r—s
=2 -H+2p—ql+2r
for every value of rin 0 € r € A. Thus in this case
Glp,9) =1+ 4
If 2> u, one deduces that
0Zr=42A+pu—2p+q—s<i}
0Lt=4A+2p—p—q@—s<pu+r—s
=pu+32A+p—2p+¢9 —2s

JEAN-ROBERT DEROME

for every value of sin 0 € s € u and

Gp.9) =1+ p
It follows that

A pu ptr—s

[y ar = 5, 573 Fom,my = 1 + min G )
r=0 3=0 t=0

that is, Eq. (8) is satisfied for every irreducible

representation of SU(3) and the 3j symbols of SU(3)

can all be chosen in symmetric form.:
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The Huang-Low bootstrap criterion of self-consistency, in the form of Levinson’s theorem, is imposed

on the exact solutions of the two-channel Low equation with an arbitrary crossing matrix. It is found that
this condition, together with a number of dynamical conditions are sufficient to restrict the continuous

crossing-matrix parameter to discrete values corresponding to an SU, symmetry.

I. INTRODUCTION

IN recent years, much interest has been displayed in
possible bootstrap predictions of internal symmetry.
Studies have been made using an exact algebraic
approach,’ or approximate dynamical methods.? In
work of the latter kind, a number of classified particles
is given, and then, by insisting on a self-consistent
solution, it is hoped that internal symmetries may be
predicted. It would appear much better to avoid any
approximations,® and to obtain an exact solution for
the S-matrix elements defined by as general a set of
postulates as possible, and then to impose a criterion
of self-consistency. This is the approach of this paper.
The postulates referred to are taken to be analyticity,
unitarity, and crossing symmetry, each of which is
considered quite fundamental to any description of
interactions. The role of crossing symmetry in partic-
ular has been greatly stressed by Wigner.* It remains,
of course, highly desirable that the number of dynam-
ical assumptions should be as restricted as possible,

! R. Cutkosky, Bull. Am. Phys. Soc. 8, 591 (1963); Phys. Rev.
131, 1888 (1963).

2 R. Capps, Phys. Rev. Letters 10, 312 (1963); J. Sakurai, ibid.
10, 446 (1963).

3 B. Diu and H. Rubinstein, Nuovo Cimento 32, 1103 (1964).

4 E. P. Wigner, Phys. Today 17, 34 (1964).

and as general as possible. It is hoped to show how
such a set of assumptions, together with the imposition
of a bootstrap criterion on an exactly soluble two-
channel static model will lead to a prediction of
internal symmetry. The model to be considered is
particularly suitable for such a study, as it incorporates
a general formulation of crossing symmetry.

This model, with a crossing matrix corresponding to
the scattering of a particle of isospin 1 by a baryon of
isospin }, was exactly solved by Wanders.® Martin
and McGlinn® generalized the crossing matrix for the
model to include a continuous parameter, and, using
an extension of the technique given by Wanders,
obtained exact solutions for the two S-matrix elements.
They had hoped that the existence of solutions satis-
fying analyticity, unitarity, and crossing symmetry
would be limited to the restricted values of the crossing
matrix parameter defining SU, symmetry. This,
however, proved not to be the case, and further
self-consistency and dynamical conditions are appar-
ently needed before such a symmetry prediction can be
made.

The self-consistency condition to be imposed in this

5 G. Wanders, Nuovo Cimento 23, 817 (1962).
¢ A, Martin and W. McGlinn, Phys. Rev. 136, 1515 (1964).
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it follows that
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for every value of sin 0 € s € u and

Gp.9) =1+ p
It follows that

A pu ptr—s

[y ar = 5, 573 Fom,my = 1 + min G )
r=0 3=0 t=0
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is given, and then, by insisting on a self-consistent
solution, it is hoped that internal symmetries may be
predicted. It would appear much better to avoid any
approximations,® and to obtain an exact solution for
the S-matrix elements defined by as general a set of
postulates as possible, and then to impose a criterion
of self-consistency. This is the approach of this paper.
The postulates referred to are taken to be analyticity,
unitarity, and crossing symmetry, each of which is
considered quite fundamental to any description of
interactions. The role of crossing symmetry in partic-
ular has been greatly stressed by Wigner.* It remains,
of course, highly desirable that the number of dynam-
ical assumptions should be as restricted as possible,
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and as general as possible. It is hoped to show how
such a set of assumptions, together with the imposition
of a bootstrap criterion on an exactly soluble two-
channel static model will lead to a prediction of
internal symmetry. The model to be considered is
particularly suitable for such a study, as it incorporates
a general formulation of crossing symmetry.

This model, with a crossing matrix corresponding to
the scattering of a particle of isospin 1 by a baryon of
isospin }, was exactly solved by Wanders.® Martin
and McGlinn® generalized the crossing matrix for the
model to include a continuous parameter, and, using
an extension of the technique given by Wanders,
obtained exact solutions for the two S-matrix elements.
They had hoped that the existence of solutions satis-
fying analyticity, unitarity, and crossing symmetry
would be limited to the restricted values of the crossing
matrix parameter defining SU, symmetry. This,
however, proved not to be the case, and further
self-consistency and dynamical conditions are appar-
ently needed before such a symmetry prediction can be
made.

The self-consistency condition to be imposed in this
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paper is that the exact solutions, satisfying the gener-
alized crossing symmetry, should also’ verify the
bootstrap criterion proposed by Huang and Low.’
This condition is essentially that of the Levinson
theorem of potential scattering.® Huang and Low?
have shown that this condition is also equivalent to
the N/D prescription for a bootstrap solution, at least
in the context of the Low equation. The condition, as
a general one, has further motivation by such results
as those obtained by Van Hove!® on the possible
asymptotic behavior of the S matrix.

In their second paper,” Huang and Low imposed
their consistency condition on the Wander’s solution,
and obtained conclusions concerning subtractions,
cutoffs, and position and location of bound states.
Also, Huang and Mueller have, using the same cri-
terion, considered the model with the generalized
crossing matrix, and obtained similar quantitative
conclusions without recourse to the exact solutions.
In addition they were able to show that the crossing
matrix parameter (defined in Sec. II) is restricted to
values greater than —4. In this paper, it is principally
sought to generalize the Huang-Low paper and so
restrict the crossing matrix parameter to that set
corresponding to SU, symmetry. To do this it is
necessary to assume certain results of the Huang-
Mueller paper, for certain cases.

In Sec. II the mathematical formulation of the
problem is given, together with the set of dynamical
assumptions to be made. In Sec. I, the consistency
requirements are imposed and the solutions restricted.
In Sec. 1V, the results and possible extensions are
discussed.

For ease of comparison, the same notation and
development as that of Huang-Low has, as far as
possible, been preserved.

II. FORMULATION
A. General Solution and Conditions

We denote the two S-matrix elements for the two-
channel static model by S,(w) (« = 1, 2), where o is
the energy of the incident particle.

The momentum of the incident particle is therefore
given by ¢ = (w? — 1)}, The branch cuts of ¢ in the
complex o plane are taken to be from 1 to oo and
from —1 to — o0, and q is chosen to be real and positive
just above the cut from 1 to oo, so that ig is a real
analytic function in the cut plane.

? K. Huang and F. Low, J. Math. Phys. 6, 795 (1965).

8 N. Levinson, Kgl. Danske’ Videnskab. Selskab., Mat. Fys.
Medd. 25, No. 9 (1949).

? K. Huang and F. Low, Phys. Rev. Letters 13, 596 (1964).

10 L. Van Hove, Nuovo Cimento 25, 392 (1962).
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S,(w) must satisfy, then, the following conditions of
the model:

(i) Analyticity, so that S, is real meromorphic in the
cut w plane.

(i) Elastic unitarity, i.e., S, has only 1 branch point
on the positive real axis, which is of the square root
type at w = 1, the threshold point. Also, the analytic
continuation of S, onto the second Riemann surface
is given by

S () = 1/S(w).

(iii) Crossing symmetry, i.e., S,(—w) = D 54,,Sx(w).
(A,p) is a real 2 X 2 matrix, and for the type of model
under consideration has the general form

1 —1 2t 42
(2t+l)(2t 1 ) M

where ¢ is a real parameter.
We now write

Sy(w) = 1 4 2igV(w)h(w), 2)
where V(w) is a cutoff function, taken to be of the form
V(w) = K2c/(q2 + k2, k>1, ¢=0,1,2,---. 3)

The three requirements for S, above are expressed by
the following dispersion relation!* for A,:

(‘Aaﬂ) =

h(w) = P(w) + L dewlqlV((ul)
mJl

[yl

Bl 54,
ﬂwl + o

><[Ih;,(w)l s @
w — o I

where P, is the sum of poles located on the real axis
between the branch points:

A; A;
Pi) = 3 (4 S Ay ),
w;, — w B w; + w

-
i

j’ic! 2 05 |a)i| < 1' (5)

The above dispersion relation may require one or
more subtractions to account for high-energy effects.

The crossing relation ensures that each subtraction
introduces only one further parameter.

We impose the following physical conditions on any
solution:

(a) A, > 0. 4,,, being the squared coupling constant
would, if negative, display a ghost state.

(b) S,(w) have the correct threshold behavior,

Su(0) = 1+ 0(q), ©)
which requires that #,(1) be finite.

(¢) S,(w) have the correct high-energy behavior,
which depends on the number of subtractions made in

11 F. E. Low, Phys. Rev. 97, 1392 (1955).
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the dispersion relation. Since the unitarity condition
may be written, for the unsubtracted case, as

Im h, = qV |h,1%,
so that
() < lgVio) e 2 1),

subtractions are needed only if the cutoff factor is
such that

lim gV(w) < 1. Q!

(d) The target particle should occur as a bound
state in one of the channels, in order that the incident
particle-target particle coupling constant should be
nonvanishing.

(e) No bound state should have a smaller mass than
that of the target baryon, otherwise there would be an
inelastic threshold below the elastic threshold.

(f) The S-matrix elements should not have an
essential singularity at infinity, in order that the
asymptotic phase shifts be determinable.

(g) There should be at most a finite number of
resonances in the scattering.

The solution dictated by analyticity, unitarity, and
crossing symmetry, and obtained by Rothleitner!?
may be written thus:

S, = Ul(B—1t— DB+ 1]D, ®
S, = UD, 6

where
B =} + i[7'log(w + q) — (0/g)f(w)] (10)

and f{w) is a real meromorphic and even function in
the entire w plane.
tan §(#B) T[{(B + t + DITH(B — 1]
tan #{}(B + D] T'[4(B — t + DIV[H(B + 1]
tan 3(=B) (1)

= n G+l

D is an arbitrary real symmetric S-matrix element,
ie.,

U(B) =

D(w) = D(—w), (122)
D*(w) = D(w*), (12b)
D) = 1/ D{w). (12¢)

The postulates (f) and (g) above imply that D may be
represented in the form

D(ay = ] L= s (1 —a,9) (1 + dlg)
w1+ ir,g » (L+ a,q) (1 — arg)’
Imr, =0, Reg, > 0. (13)

The normalization D — 1, g — 0 is chosen to comply

12 1, Rothleitner, Z, Physik 177, 287 (1964).
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with the threshold condition, which is then satisfied
if (1) # 0. The high-energy behavior is obtained by
noting that

Do) —>1+ %4 & (14)
@0 w w”
B(ew) —> (-—‘-) log & — B(w), (15)
[/ e o] Fri
i
Ulw)—> |1 4+ —|. 16
{w) — [ + B(w)] (16)
Hence
S, — 1 dy, d
hy = L 20—1[.&2‘_.. st A T ] 17
2iqV - B(co)+w +w2+ {7
Since f(w) is an even meromorphic function
B@)—> ko' (n=0,£1,£2,-+). (18)

Hence,
Bw)y~logew if n<0,

B(w) ~ o® if n> 0.

The number of subtractions required in (4) is deter-
mined by the values of ¢, #» and the numbers d,,
dy, .

For the case of K subtractions we must have that:

if ¢ = (1 4+ K): no condition on fi{w)
and D(w);

ife>31 4+ K):n>c— ¥+ K), 19)
plus a condition on D{w).
B. Bootstrap Conditions

For o > 1, we write

S,(w) = exp [2i8,(w)], 20)

D(w) = exp [2if()], 1)

(B(w) — t = DI(B@) + 1) = exp [2ip(@)], (22)
U(w) = exp [ip(w)], 23)

where d(w), O(w), y(w), and @(w) are real. The
representations of Eqs. (22) and (23) are valid since
B® (@) = —B(w) -+ 1, and so

UB(w) = +1/U(w),

di(w) = p(w) — H(w) — y(w), (242)
8y(w) = () — H(w). (24b)
Using the representation (13)
_— e -1 2qI mPn
6(w) = % tan™ (r,q) + g tan PRy TR ol (25)
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w may be verified to be given by

coty = —[2/2¢ +D][=" log (@ + 9) — (w/g)B(w)].
(26)
We use the notation Aa = a(w0) — «(1), so that, by
the above, the phase shifts for each channel may be
written as
Ad, = Ap — Ay — AD, (27a)
Ad, = Ap — A8, (27b)
The Huang-Low bootstrap criterion hence becomes a
condition for Af, Ap, and Ay.
It is easily verified that
Abfm =M, — M_+ ¥(m, — m.), (28)
where
M , = number of a,’s in (13) with I,,a, 2 0,
m_ = number of r,;’s in (13) with r,, 2 0.
In Appendix B of the Huang-Low paper it is shown
that
Aypfm = ¥(K, — K)), 29)
K being the number of roots of the equation B(w) =
y. The following theorem, vital to the ensuing analysis,
is also proved, but is here, again, only quoted:
(i) There is no root of B = y on the imaginary axis
except for y = 0.
(ii) There is no root on the real axis |w| > 1 for

any y. (30)
(i) K, = K_,.
(iv) K, is independent of y for |y| > }.
™) K; =1 — v 4+ max (Z;, Py)
where 7 = {1 if f(w) 'has apoleat w =0 G1)
0 otherwise

and Z,, P, are respectively the total number of zeros
and poles of f(w) on the physical sheet, and so are
given by
Py=2N+ N, + N),
Z,=2n+ N+ N, + N).

Here, N, = number of poles of §(w) on the real axis
w > 1, with positive or negative residues. 2N =
number of poles of f(w) not on the real axis |w| > 1.
It may also be shown by precisely similar methods
that for |y| < $, K, = K,. This result is also used.

(32)

C. Location of Bound-State Poles
S,(w) has the same poles as A,, plus the poles of
V(w), which are of order ¢, located at w = +i(x2 — 1)}.
The poles on the real w axis between +1 must

conform to
i A
P =3 ( —"
)'ia 2 0,

+ zAaﬁ
B

i \w; —

fo,] < 1.
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The poles of S,(w) can occur only at the poles of D,
of U, and the roots of B = —1t.
The poles of U(B) in the physical region lie at

B = +1,
B=42n+1), n=0,1,2--+, (33a)
B=4(t—2n—-2), n=0,1,2---.

The zeros of U(B) in the physical region lie at
B = 42n, n=012---,
B=x(t—~2n-1), n=0,1,2,---, (33b)

Unless ¢ is an integer, there cannot be an infinite
number of cancellations among these zeros and poles.
For ¢ integer, tan m(}B)/tan w[}(B + ¢)] becomes a
symmetric S-matrix element and can be absorbed in
D, leaving U = U, with a finite number of zeros and
poles, provided only that B = y has a finite number of
roots for each y. B = y has no roots on the imaginary
axis except for y = 0, and therefore unless 7 is an
even integer greater than 2, the cutoff poles must
occur in D.

In order that the pole terms of S, have the required
structure, poles of D must occur only at:

(1) +i(x = 1)

(2) roots of U = 0;

(3) real roots of B = ¢ + 1, lying between v = +1,
and that

(4) there must be zeros of D at all complex poles of
U and

(5) there must be zeros of .D at all bound-state poles
of U.

The residues of bound-state poles in S, have the
opposite signs to those in A (w) since ig < 0 for
|w| < 1. Denoting by A, the effective coupling con-
stant, which in terms of the actual squared coupling
constant, 4,, is given by

A, = 2V(w)(1 — o)1, . (34)

The connection between poles and bound states is
shown in Table I.

III. NECESSARY BOOTSTRAP CONDITIONS

We now restrict the solutions by imposing the
Levinson’s theorem form of the bootstrap criterion,
thereby obtaining necessary bootstrap conditions.
By means of these conditions, the solutions for ¢
noninteger are excluded.

We need the following lemma, which is proved in
Appendix B.



720

ANDREW A. CUNNINGHAM

TasLE L. Conditions for bound-state poles.

bound-state energy ~ channel conditions coupling constants
0 1, 2 or both either U=, D=00rU=0, 241
D = o and UD has a simple A — Ay =— Res UD
1 2t
pole
0 < [, < | wyin 1, —w,in 2 either (a) w, is a pole of U, A, =2+ 1)Res UD

D = 0and UD has a simple pole
or (b) wyisapoleof D, U =10
and UD has a simple pole

wein 1
or o

@, in 2

B + t = 0 (simple zero) UD # 0,

B —t — 1 = 0 (simple zero)
UD = = (simple pole)

Blwg) — t — 1
A, = Res UD[-—T_H——

-2+ 1)]

Ub
A1=—(2t+1)ResB+t

A;=UB=t+1)Res D

Lemma: Writing U(B, t) = exp [i2¢(w)], then for
n=0,12---,
Ap,=0 if te@n—s52n+5s), 0<s<4,
if te@n+1—s52n+1+45),
0<s<4,

Ap, = Ay

Ap, = Ay if 1=142n+1).
It is necessary to examine each of these three possible
cases individually.
A. The case Ap =0
By (27) we may now write
Ad; = —A6 — Ay,

Ad, = —A6.
The bootstrap criterion then takes the form
AbJm = b,, (35a)
Apjm = by — by, (35b)

where b,, b, are respectively the number of bound
states in channels 1 and 2.
We further write

by = o + by + py,
by = sy + b2y + o,

(36a)
(36b)

where u,, is the number of bound states in channel
1 at the roots of U = 0, b,, is the number of bound
states in channel 1 at the roots of B =1, p; is the
number of bound states in channel 1 at the poles of
(B — 1)U, uy, is the number of bound states in channel
2 at the roots of U = 0, by, is the number of bound
states in channel 2 at the roots of B = 1 4 ¢, p, is the
number of bound states in channel 2 at the poles of
(B — t)U. Now, for all values of 1, U has poles at the
roots of B = t, and for all values of ¢ other than a
positive even integer, has zeros at the roots of B = 0.

We therefore first consider the case when ¢ is non-
integral and hence write

U = [B/(B — 1)]V(B).

By (28) we may write
Ab/m = 4c + (Afy + AB, + AO_, + AB,, )7 — }X,
(38)

where Afy/m is the contribution to A6/ from zeros of
B =0, Ab_,/n is the contribution to Af/m from
zeros of B+t =0, Af, /= is the contribution to
Af/m from zeros of B — (t + 1) = 0, Af, /= is the
contribution to A6/ from zeros and poles of V, and
1 X is the contribution to Af/w from “extra zeros” of
D. X is, of course, either zero or a positive integer.
Consider the roots of B = —. Let there be K_,, real
roots and 2K_,, complex roots. Therefore K, +
2K_,. = K_,. Every complex root must be canceled
and some or all of the real roots may be canceled by
zeros of D.
Suppose K_,, real roots are canceled. Then

(37

Ab_/m = —K_,, — 3K' R, (39)
as is seen from (28). Also
by, = K_;r — KLig. (40)
Therefore
Ab_y/m = 3(by — K_y). (41)

Consider the roots of B=17¢+41 (t# —1). Let
there be K, real roots and 2K, complex roots.
Therefore Ky, e + 2Ky . = Kyyy-

Poles of D may be placed at the real roots but not
at the complex roots. Suppose K|, of the real roots
are canceled by poles of D. Then

A(914-1/7” = 'lz'Ki«HR, (42)
b2l+t = Ki+m, (43)
Al /= 3byy . (44)
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Consider the roots of B = 0. There is always a root
at w = 0, unless f(w) has a pole at the origin. We
therefore designate the number of roots as follows:

at w = 0: (1 4 2m,)d ,, where » is as given in (31)
and m, is a positive integer or zero.

at w # 0: 2K, real roots,
2K,; pure imaginary roots,
4K,y complex roots.
Therefore

1+ 2m0)6v0 + 2(Kor + Kor + 2Koc) = Ky (45)

Let there be a factor [(1 — ig)/(1 + ig)]* of D to
cancel some of the roots at w = 0, and let there be
poles of D such as to cancel 2K, ;,, 2K,;, 4K, of the
other roots. Hence, the contribution to Af/7 from
the B factor of U is

Abyjm = §s + ¥(Kor + Kop) + K. (46)

Suppose V(B) has 2K, real roots; 4K;,, complex
roots; 2Zy, , real poles; 4Z;,, complex poles [V(B) has
no pure imaginary zeros or poles]. D must have zeros
at all the complex poles. Suppose D has zeros at
2Zy 1, of the real poles. Suppose D has zeros at 4K,
of the complex roots. Suppose D has poles at 4K}, , of
the real roots. Therefore

A01"/77' = %K{/R + Kf/'c - %ZP,'R - ZVc . (47)

BV(B)D can have at most a simple pole at the real
roots and cannot have a pole at the nonreal roots.
Therefore

Koe £ Koc» (48)
or < Koy, (49)
Ky, < Ky,. (50)

Let z be the number of pairs of simple poles of
BV(B)D located at some or all of the nonzero roots of
B =0, V=0, and the poles of V. Then

Kop — Kop + Kyp — Kpp+Zypp — Zyp L 2.
&2)

In the neighborhood of the origin BD ~ «® where
x = (1 4+ 2mg)dv, — 2s. For the target particle to be a
bound state of the model, we must have x = —1. This
is satisfied only when

s=1+4+m,, (52)
y = 0. (53)

From Table I,
u10+u20+1’,1 +P2=2Z+ 1. (54)
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Using inequalities (48)-(51) we obtain
2[Abyfm + Abp[n] < [} + 3K, + 2]
+ [(Kyr + 2Kp) — (Zyg + 2Zy )] (55)
But
Aylm = (uyo + by + py) — (ug + byrii+ P2)
AD
= (“10 + 2—4 + K_; + Pl)
— (ugo + 240, /7 + py).
But

Ugy + 206, ,,/7 + p,
= 1c + (ABy + ABy + AO_, + AO,, )|7 — 31X,
so that
200, 7
= ¢+ 2(A0, + Aby + AO_)[7 — X — 2uyy + p).
Hence
Ayln = —c + K,
— 2A0p + Abp)[m + (tye + uzo + py + p2) + X;
therefore using (55) and (54)
—Ayjn <c— K, + [} + 1K, — 7]
+ [(Kyr + 2Kpo) — (Zyg + 2Zy)] — X.
Therefore from (29) we obtain
0<L e+ [Ky— K, — 3Ki] + [(Kpg + 2Ky,)
—Zyr+2Zy)) -3 —z—X.
V(B) has zeros at the roots of

B=42n, =12,

and
B=x[2(n—ny) +s5—1}
V(B) has poles at the roots and
B=402n+1), ng=0,1,2,---,

ny=0,1,2--.

and
B=DRn—-n)+s-2], n,=0,1,2,---,
where
t=2n+s and 0<|s|<% n=0,1,2,---.
We therefore see that
(Kyr + 2Kp) — (Zyr + 2Zy))]
=K, — K, = Ky — K,,
=0 forn=0.

n#o0,

The above inequality hence becomes

0<c—3K—-%3—z—X,
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i.e., using (32)

0Lec~(N+N_+N)
—max(0,n) —1—z— X. (56)

From this inequality follow, as shown in Huang-
Low’s paper, the following two theorems.

Theorem I: There exists no bootstrap solution
satisfying an unsubtracted dispersion relation.

Theorem 2: For a once subtracted dispersion
relation, a bootstrap solution must have ¢ = 1. If
further, the target baryon is required to be a bound
state, then f(w) = By, where f, is a nonvanishing
constant.

We now consider the once subtracted solutions, so
that ¢ = 1, f(w) = B, # 0, K; = 1, s = 1. From (56),
also X = z = 0 and hence by (54) u;o + us + p1 +
pe = 1. But u;y + uyy # 0 since the target baryon is
required to be a bound state in at least one of the
channels. Therefore p; = p, = 0. Therefore

(#105 uz)) = (1,0) or (0, 1).
For f, < 0,

(57)

=K, =1= Ay/m = 0.
(See Appendix B of the Huang-Low paper.) Therefore

bl = b2 = 1 (58)
by (57). For 8, > 0,
Ko=K +2= Ap/n =1.
Therefore
bl = bg + 1.
Therefore by (57), either
(b1,0) =(1,0) or (2,1). (59)
But
AOV/"" =b, — (Aoo/") - %b21+t - %bu,
while for
fo<0, Aby/m=1% and by, + by, =1,
Bo >0, Aby/mr=1} or 1
and

b21+t + blt = 1 or 0.

Therefore in either case Af /7 =0, 4,1, 14. But Ky, <
KypsZjp =Z,p, and so

AOV/’” L ¥HKyp—Zypp) =0, or %

(B — y = 0 has no imaginary or complex zeros for
y # 0).
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Therefore in all cases K, p = Kpg, Zpp =Zpgp.
Denote the countable set of zeros of V(B) by
{Z;}. Denote the countable set of poles of V(B) by
{P;}. Write

z=1-zp!, P=-P
Then D(w) contains as a factor, the infinite product
of terms

H(1 = 19/Z) (A + ig/P)

i (L+ig/Z) "5 (1 — iq[P))
None of the terms can be canceled in the expressions
for S,. But these products are divergent in the
supposed domain of analyticity of D, since

B(w) = } + i[n7' log (» + q) — ®[gB,].
Therefore
4B _ i{l _ _LJ
do gqlm 1 —o?]

Therefore B is either monotonically increasing or
decreasing in the neighborhood of the threshold
o = +1.If wy is such that B(wy) = N, then |wy| — |

as N — o
Allim—B—(w—N)»l as N— oo, Sy=(—aw)t
where
) Snan o Bo # 0. (60)
The zeros of V occur at the roots
o’ of B—(2n+2)=0,
0? of B—2n+1—16)=0, n=0,1,2,--
But
1 + Z(l) 22511)
1— Z(l) + 1 — Z;l) )
Therefore by (60),
22(1)
Z(l)/(zn + 2)—1 Nowo _'ﬁo s
(1 + Z(l))
]-;-[ (1 Z(l))
is divergent. Similarly,
H(l + Z(2))
" (1 Z(2))
is divergent. Likewise, poles of ¥ occur at the roots
PV of B—Q2n+1)=0,
—2n+2—-9H=0, n=0,1,2,-
As above,
a- PL”) (1 =P

II

a (1 + Pi}’) H

(1 + P(2))
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diverge. This shows the infinite product factors of D
to be not absolutely convergent at the origin, and so
contradicts the analyticity conditions for D. The
solutions for noninteger ¢ lying in the given ranges
must hence be rejected.

We now obtain the solutions for t =2n, n =1,
2,-+-. We may now put U = U,. U now has poles at
the roots of B=0, and so we write U(B) =
[1/B(B — H)]¥V(B). D must have zeros at all the
imaginary and complex roots of B = 0.

With an analogous notation to that used above,

Aby/m = —}s —3(Kor + Koy + 2Koe),  (61)

Abp|m = ¥ Kpr — Zyr) + (Kpe — Zy.). (62)
If z is the number of pairs of simple poles of V(B)D/B
located at some or all of the nonzero real roots of
B =0, V=0, and the poles of ¥, then
Kor — Kor + Ky — Kvr + Zyr — Zyg < 2. (63)
Suppose D/B ~ w” as w ~ 0. Then

25 —(1 + 2my)d,, = x.
Again we require that x = —1. We must have that
s=myand y =0
2Afy + Aby)[7m = —s—(Kop + Kor + 2Ko()
+ [(Kyr + 2Ky — (Zyr + 2Zp )]

therefore, using (63), (64), and K, < K,

2A0, + Abp)|m < [+3% + z — 1K(]
+ [(Kypg + 2Ky — Zyr + 2Z5)))

(64

Now,
(Kyr + 2Kp) — (Zygr + 2Zp)) = K.
Finally,
2(A0, 4 Abp)/m < [} + z — 3K, + Kil.
As before,
Ayln = —c + K_, — 2(A0, + Aby)[m
+ (1o + 3o + p1 + p3) + X,

(65)

and so
HK; — Kp) S e~ K,
+R+z— 3K+ K] —2Z—1-X,
i.e.,
0<c—K—~X—2z—1
This inequality is identical to (56) and so Theorems 1
and 2 follow immediately.
For the case of one subtraction, we may therefore
set c=1, flw)y=F,#0, X=2z=0, K, =1. For
By <0, Ky = K; = 1, therefore s = 0,

Apfr =0, .. b, =b,.

(assuming ¢ # 0).
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But
U + o +p1+ pa= 1.
However, p; + p, # 0, since w = 0 is a bound-state

pole of U. Therefore u;o = uyy = 0 and (p,, p,) =
(1,0 or (0, 1).
) Ki+tR =1= K1+ts
KI_tR = l = K—i'
Also
. Kir = Kor = Ko = 0.
Since
Abfm=1=%+ A0/r then Abyjm =14,
Kyr=Zyp+1=2Zyp +1=Kypg.

D has zeros and poles at all the poles and zeros of V.
But

B ™"™'[B+4 2K 4+ 1][B — 2K — 1]
B—2nk>  [B+2KlB—-2K]
Denote the roots of B= N by wy, N=1,2,---,
and write Sy = (1 — wfv)é. We now have

_ (= ig) (1= ig/Ssas) (1 + ig/Ss,)
(1 + ig/e) (1 + ig[Sayi1) (1 — iq/S,,)

% ﬁ (I — iq/Sas1) i (1 + iq/Sy) )

=0 (1 + i‘I/Szk+1) k=0 (1 — iq/S; )

By Table I, the effective coupling constant squared for
incident particle and target baryon is given by

_Un+ )

n
4n+1K+1 1 1+Sgn+11—82”
8n® k—11/m— Byl — Sypn 1+ Ss,

k=1 k=01 — Sppqi=11 — Sy ’
(66)
therefore, A; > 0. Similarly for the bound state in
channel 2 at the root of B = 2n 4 1
K + Sont1 Son — Sons1 v 2k
K — Szn+1 Szn + Szn+l k=1 2k + 1
1 S2k+l + S2k+1 nt SZk e S2’n+l

X 11 . (67)

xk=0 S2k+1 - SZn+1 k=1 S2k + Szn+1

U=

A = Res UD | -0

=+

Ay = (4n + 1)

We have found a bootstrap solution for ¢ = 2n,
n=12---. We try now
(Pl , Do) = ©, 1), (b1, bayy) = (1,0).
K.,g=Ki r=0,
Kyr = Kygr, Zypr=Zyg,
_ (1 — ig/x) T2 (1 — g[Sy ) %5 (1 + iq/Sz)
(1 + g/ k=0(1 + ig/Sy) i1 (1 — ig/Sp)
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The effective coupling constant squared for the bound
state in channel 2 is

Ay=3 D Resup]osy
_ An4 12k 4+ 0¥ 1 k41
B 8n? k:l( 2k )1 k—1
Bo

o TPt Sue) 50— Sw).

k=0 (1 — Sgp) =1 (1 4+ Syp) ’

therefore A, < 0, and the solution is unacceptable.
Suppose now that 8, > 0, so that K, = 3. If

(pl’ Pz) = (1’ O)a (blt’ b21+t) = (1’ 1)’

then
KLip=0, Ki-{»tR =1=Ky,.
89 1 L A0tA0)_
T 2 2 T
(A8, + Aby)/m = 0.
But

Aby/m = —1s — H(Kor + Kop) — Koo
K(I)C = 0.
For B, < l/m, Ky =1 and we must have K p =
K,r. For By=1/m, S=my=1. For By > l/m,

K,; = 1 and we must have K,; = K,,. In all cases
Abfm = —3,
Abyfm =1,
Zyr=Zyg, Kyp=Kyp=Zpp+1.
Hence,
D(w) = (I — igfi) (1 — iq[S3ns) (1 + iq/Sy)

(U + gl (1 + ig[Szny0) (1 — i4/S))
o T 1S T (L iaSw)
k=1 (1 + iq/Sy_y) e=1(1 — iq/Sg)
The effective coupling constant squared for the bound
state and w,, in channel 1 is

UD
A =—-4 DR
1 (n+)esB+

I lo=wan
_ (4n+1) ﬁ(2k —1D4n-2k+1)
B 8n? 2k(4n — 2k)
% (1 + Sefe) (1 + SZn/S21z+l) (1 — S20/Sy)
(1 — Sz,/%) 51 - S2n/ls2n+1) (1 '/" S20/So)
(1 4 SpufSax—1) v (1 — Ss,/Sas)
S/ B (LT SarfSa)

k=1

X Res )
B + 2n w=w2zy
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But
B'(w) == l_l:ﬂ_l — __ﬂo_a]
q l—w
while
Res 1 — 1 (1 + S2n/s2n+1)
B + 2nlo=wsn  B'(ws,) (1 — S2,/S2ns1)
X Res > 0.
B + 2" W=wgn
If
1
Bo>—, S¢>18,,
T
while

If By < 1ljm, Sy <1 while S, < Sy, Sor-1, again
A, < 0. Hence, the assumed distribution of bound-
state poles gives an unacceptable solution. Try now

S2k—l 4

by=1, b, =0,
so that
(P19P2) = (1, 0) and (blt’ b2l+t) = (0’ 0),
K’—tR =1, Ki+t1‘e =0,

Abjm =13 — 3+ 46, + 20 _ g,
Yo

therefore, as before, K ,p = Kpr, Zpp =Zpp.
Hence,

p = (L= ia/) (I + iq[Ss,) (1 + iq/Sy)
(1 + ig/r) (1 — ig/Ss,) (1 — iq/S,)
" (1 — ig/Say) 5+ (1 + iq/Sa)
k=1 (1 + iq[Spq) k=1 (1 — i‘I/Szk).
The effective coupling constant this time is

A==t DResUD],,
4n

_4n+1x+11——52n1—50 1
8n® k—114+8;,1+4+S,1
_""Igo
T
9 ﬁ(l +Szk_1)"ﬁ(1 + Sw)
=1 (1 + Sppy) &=1 (1 — Sgy)

(68)
since,

1 - S()

= _ Ro

_— B
For this distribution of bound-state poles we have a
solution. For the case t = 0, Uy(B) = 1

Sy =[(B~— 1/B]D, S,=D.

But then it is seen that if @ = 0 is a pole of S, it is at
least a double pole of S, , and so cannot be interpreted

>0, A, >0.
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as a bound-state pole for either channel. This concludes
the discussion of the Ag = 0 case.

B. The Case Ap = Ay

Consider the case for

t=2n+14s5 0<]|s|<i (69)
We now write

Ad, = —AB, Ad, = Ay — A0,
so that the bootstrap criterion becomes

Ab/m = b,, Ay/m = b, — b,. (70)

Equations (36)—(55) remain valid. Again,

Aylm = (uyo + by + p1) — (U0 + bayyy + po)
= (uyo + 280_/7 + K, + p1)
— (U + 2461, /7 + po).
But now,
Uy + (280_y/m) + K+ py
= 3c + (A, + ABy, + AO_, + A0, )7 — X,
Ab_yfm = uyg— K, — py + ¢
+ (Aby + Aby + AB,y)[7 — X,
so that
Apjm = ¢ — K_, + %(Ae0 + AG)
~ (Uyo + U0 + pr + p2) — X.
Then, proceeding as before we find the following
inequality:
0Lc—4—-3K,~—2z—-X
+ [(Kyg + 2Ky) — (Zyr + 22y (T1)
The zeros of V(B) now occur at the roots of
B = 42n,,
B=4Q2n—2n+3),
The poles of V(B) now occur at the roots of
B=4+Qn+1), ny=012---,
B=Q2n—2n,—~1+3),
(Kyr + 2Kp) — (Zyr + 2Zy) = Ko — K,
and the above inequality becomes

0<c—}+K—-3K,—z—X

n1=1’2,...’
ny=0,1,2,+"-.

n4=0,'.'9

(72)
or

0<c+ N, —3N_— N—max(n,0) —z — X.
It is impossible to draw any conclusions from this

inequality. We therefore try to incorporate the con-
clusions of the Huang-Mueller paper, thereby using
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an analysis of the polology off the real line. They show
that the number of bound-state poles in channel 1 is
1 and in channel 2, either 1 or 0. Therefore assume
by=1land b,=0o0r1.
Ay/[r =0 or 1.

For Ay/n = 0, K, = K, and we obtain from (72) the
original inequality, (56), from which Theorems 1 and
2 follow. To obtain this then, we require that the
target particle appears as a bound state and that each
channel has the same number of bound states. The
other conclusions of these are no solution without
a subtraction and cutoff may then be drawn, together
with the exclusion of the noninteger case.

For Ay/m = 1, Ky = K, + 2, and so from (72),

0<(c+2)—(N+ N, + N_) — max (n, 0).

We may also take ¢ = 1,

N+ N, + N_+ max(n,0) < 3.

Also n+ N4+ N_. 4+ N_> 0. The parameters n,,
Ny, N, N_ then all take a limited number of finite
values. However, we now have
(uIO’ blt’Pl) = (1, O’ 0),
(4295 bayy, p2) = (0,0, 0),
(o + U+ pr+p)=1=2Z+1,
.. z = 0, irrespective of the value of XK.
Also,
Ao—t/'” = —}K_,= —3K,
since ¢ > 3;
Ay /7 = dbyyy, = Kl =0,
1 = Af/m =} + (A8, + Aby)/7 — 3K, — }V,
200, + Abp)|m =1+ K, + X. (73)

But
2(08y + Abp)fm < [3 + 3Kl + Ko — Ky = £ + K5,
XS % - %Kl’
0<X¥X<K2 1<K L5 (74)

Writing (73) explicitly

s + (Kor + Koy + 2Ky) + Kpr + 2Ky,
_Z;/R_ZZV0=1+K1+X'
But
s + (Kog + Kor + 2K;)) + Kyp + 2Ky,
—Zyp + 2Zy, = § + }K;.
Subtracting,

(Kor ~ Kor) + (Koy — Kop) + 2(Koe — Ko)

+ (Kpr — Kpg) + 2Ky, — Kyp)
~Zyr—Zyp) =3 —3IK; - X L2,
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by (74). But, in order that unwanted bound-state poles
should not occur

KE\C' g KOC’ K:)I S KOIa K;/c S KVc:

Kor £ Kors Kyr < Ky, Zpr < Zpg,
Kyr <2+ Kyr, Zyp <2+ Zpg;
therefore all but at most two of the infinite number of
real zeros and poles of V' must be canceled by D.
B(w) is a real analytic function in the cut plane and
so is continuous on the interval (—1,1) in which

B(w) = y has at most five roots, and at least one.
Hence there exists a neighborhood (1 — 4, 1) in
which B(w) is a monotonic continuous function

B(w)—> 400, if f(1) <0,
B(w) —> —oo, if A(1)>0.

Suppose, without loss of generality B(w)— + .
Let wy be the largest real root of B(w) = N. The set
of roots {wy} is therefore an infinite countable se-
quence. But
limwy =1,
N-w
lim Bey) =1,
N>«
ie.,

SyIN— —B(1) # 0.

[f(w) does not have a pole at w = 1, since » = 0.]
D(0) possesses the factor

(Py— 1)

l;/I(PN-{-l)’
where N=02n 4+ 1),n=0,1,---.But

Py—1_ . 2
Py+1 Py+1’

and

2/13‘N+1_> 2 -0,

1/N —p(1)

The product diverges as do the other infinite products.
The solution is therefore rejected. Suppose now that
t=02n+1), n=0,1,2,---. Inequality (71) re-
mains valid, but since s = 0,

(Kpgr + 2Ky) — (Zygp + 2Zy) = 0.

Hence, again we have (56), from which Theorems 1
and 2 follow. For one subtraction we may therefore
set

ce=1 Blw)y=F#0, X=z=0, K =1
As before, p; =p, =0 and (uy, up) = (1,0) or
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(0, 1). Suppose firstly that 8, < 0. In this case
K, = K, and the roots of B(w) = y are all real and
simple. Since Ay/m = 0, then b; = b, (75), i.e., there
are the same number of bound states in each channel.
We now have

(a0, 130 = b= (G b = e

In either case, b, = b, = 1, i.e., there is only one
bound state in each channel.

Ae/” =} 4 [(Af, + ABV)/”T + 3(by, + bzl+t)] -3}

(A6, + Abp)jm = 1.
Since
Afyfm =3,
Aey/‘ﬂ' = 0, or K;’R = Z;’R’

But Kjp < Kpp while Z, 5 > Z,p since Kpp =
ZVR’ K’;R = KVR = ZVR = Z;’R’ i.e., D must have
simple poles at all the zeros of ¥ and simple zeros at
all the poles of V. Assuming that (by,, by.¢) = (1, 0),
so that there is a bound state at @ = 0 in channel 2,
and a bound state at w,,_4 in channel 1, then gives

p =4 =i~ iqlx)
(1 + ig) (1 + igfx)
o (1 — ig/Seg) (1 + iq/Sex—1)
&= (1 + ig/Sox) (1 = ig/Soxcy)
Then calculating the effective incident particle-

target particle coupling constant squared given, in
Table 1, by

Ay = [(21 + 1)/21] Res UD|, -,

we find that A, < 0, and so this solution is unaccept-
able. Assuming that (b, by = (0, 1) so that the
target particle appears as a bound state in channel 1,
while a bound state at the root of B = 2n <+ 2 appears
in channel 2. We now have

- (A —ig) (1 — ig/x) (1 — iq[Ssnss) (1 + iq/Ssn)
A+ i) (1 + igfe) (1 + ig/Sspt.) (1 — iq/S,,)
Bl —ig/Ser) (1 + ig/Ssx_)

221 (1 + iq/Sax) (1 — i4/Sax_y)

from which we calculate the two effective coupling
constants squared to be

e (e [

Sopez+ 182043 — 155 (1 + Sex) (1 — Soxy)
Sonss — 1 Sgpqr + 18=1(1 = Syx) (1 + Sexy)
(75a)
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S§n+2 (1 + Szn+2) K+ S2n+2

w2n+2(1 - Szn+2) K — S2n+2

S2n+1 - 52n+2

Szn+1 + Szn+2 K=1 2K + 1
X ﬁ (S2K + 52n+2) (SZK—I — 52n+2) .
£-1(Sex — Sante) (Sag—1 + Senyo)

Clearly A; > 0, while for §, < 0, B(w) is monotoni-
cally increasing on the interval (0, 1) and so A, > 0.
This solution is then an acceptable bootstrap solution.
We now investigate the case when f; > 0, so that

(75b)

Kl=1’ Ko=3,
by = b3 + 1,

d Ayjr =1,
an ylm (76)

i.e., there is one more bound state in channel 1 than
in channel 2. If as before, w, denotes the nonzero
root of B =0, then for 8, < 1/m, w, is real between
o = %1. For iy > 1/m, w, is pure imaginary. For
Bo = 1/m, all three roots coincide at w = 0. We must
have (uyy, Us) = (1, 0) and either (by,, by,) = (0, 0)
or (1, 1), i.e., either by = 1, b, =0 0r b; = 2, b, = 1.
However, Afy/m + AGy/7 =1, in both cases.
But Afy/7 = 1 or 1 while Af,/m < 0. Therefore the
only possibility is that A/ = 1, i.e., Kjp + Ky; =
1 and
AOp|m =0,

KiJR = Zf/R =Zyr = Kypg. an

Again, D has simple poles at all the zeros of V, and
has simple zeros at all the poles of V. For (by,, by.,) =

LD,
D= (1 —igq)(1 — ig/x) (1 — iq[Se) (1 — iq/Ssnr2)
A+ ig A+ iq/) (A + ig/Se) (1 + iq/Ss,12)
% ﬁ (I + Sex)d — Spx—y) .
E=1(1 — Sox) (1 + Sexy)

For the bound state at @ = w,,,;, Table I requires
that

UD
B+2n+1

1= — (4n + 3) Res
22n 4+ 1)
which is easily verified to be negative. This solution is

therefore rejected. Consider the case (by;, by ;) =
(0, 0) so that

p=4—i9 (I — ig/r) (1 + iq[Spn41) (A — iq/Sy)

T (L ia/Sa) (L+ i0/Surc )
E=51 (1 + iq/Se) (1 — iCI/SzK—1)'

B
W=wWzn+1
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The effective incident particle-target particle coupling

constant is then given by

4n + 3
=—2T2 (0)Res BD

L S 1y O ResBD|
_24n+3)(1  \k+1A 2K ¥
(2n+1)2(7r ﬂ")x—ugl(zl(—l)

x&m—1&+1"0+&ﬂ0_&mj
Senp1 +18Se — LE=1(1 — S\ + Sopy

(78)
This is positive since

17 —
(éo——jl’i")zo for B, > 0.

We therefore have an acceptable bootstrap solution.
C. The Case Ap = 1Ay

It remains to consider the solutions for t = (2n 4 1),
n=0,1,2,---. Now

==t __ _p,
T 27 T !
Ad, Ay A0

— = — —— = —b,.
T 2 T

The bootstrap conditions are now that

Ay[m = by — b,, (79
Abjm = }(by + by), (80)
Equations (36)-(55) are still valid, but now
[(Kyr + 2Ky) — (Zpg + 2Zy)] = Ky — K,
for n even,

= 0, for n odd.
Suppose o is such that

7 1log (w + ) = (w/g)f(w),
7t log (—w + ¢) = —(o/g)f(w),
7 1llog (—1) — ntlog (@ + ¢) = —(w/g)f(w).

The only roots of B(w) — § = 0 are at w = 1, there-
fore K% = 0. Now,

Af 2A6
(“10 + 280 + K_;+ P1) + (”20 + =+ P2)
T m
—cq 2(A6, + AGy) " 2A6_, 4 2A0, _x,
T T T
Upg + sy + Py + P2 + K,
et 2(A0, + Ab)) _x

ki
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24+ 14K, —c+ X< [+ 3K+ 2]
+ [(Kyr + 2Kp,) = (Zpr + 2Zy.)),
ie.,
0<c+34K,— K, — X -z~ 1}
+ [(Kyr + 2Kp) — (Zyg + 2Zp,)].

This inequality becomes

0L c+ K, —Ki—X—2z—-3% n=0, (81a)
0<c+Ky— K,— X—2z~— 4, nodd, (81b)
0<Lc+3K,— 2K, — X—z—14, neven. (8lc)

‘From the last inequality, for » even, we are able to
derive Theorems 1 and 2, and so exclude the solutions,
since there is no infinite number of cancellations among
the zero and poles of V for this case.

For the first two inequalities it is impossible to draw
any conclusions without recourse to the results of the
Huang-Mueller paper.

This we do by assuming that either

b1=b2 or b1=b2+1.

Then, from (79), either Ayp/m = 0 or 1; i.e., either
K; = K, or Ky = K; + 2. For both (81a) and (81b)
we have

0Lc—-}K 4+ —X—12z

From this, with the single assumption stated above,
Theorems 1 and 2 follow, and the solutions are ex-
cluded by the nonanalyticity of D(w).

1V. DISCUSSION

We have applied the bootstrap criterion of Huang
and Low to the two-channel static model, and found
that only for values of the parameter ¢, corresponding
to an internal SU, symmetry, can acceptable solutions
be found. In addition, the possible distributions of
bound-state poles have been found to be limited to
one in channel 1 and either 1 or 0 bound-state poles
in channel 2, the target baryon occurring as a bound
state in channel 1.

It is of considerable interest to note that a similar
solution to that obtained in Sec. III for z = 1 and for
B < 0 was obtained by McGlinn and Albright??, using
the condition that there be a minimum total number of
zeros of both S-matrix elements.

Even after the imposition of the consistency con-
dition, there remain two undetermined constants,
namely «, which arose from the assumed cutoff
function, and 8, which may be thought of as an
effective subtraction constant. As discussed in the
Huang-Low paper, this nonuniqueness of the final

12 W. McGlinn and C. Albright, Nuovo Cimento 27, 834 (1963).
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T S 0 y 2 3 Z

T=2

J=1

I=4
T=6

1=5 1

-4 -3 -2 -1
n

FiG. 1.(a) The coupling constant squared for the target baryon
as a function of the parameter ﬂ., , with incident isospin 1, 2, 3,4, 5, 6.
(b) The coupling constant squared for the bound state in channel
2 for incident isospin 1, 2, 3, 4, 5, 6.

solutions may be a manifestation of insufficient
account being taken of high-energy effects and other
channels, only considered by means of the cutoff.
The necessity of a cutoff indicates, in fact, that the
solutions depend sensitively on the high-energy
behavior. It would be interesting to investigate the
extent to which the assumed dynamical properties, for
example, the form of the cutoff, are necessary to obtain
the conclusion that + must be a positive integer. In
this connection, it would seem that the model is not
appropriate to the description of the scattering of two
isofermions, e.g., N — K scattering for which ¢ = }.
Nevertheless, the dynamical assumptions made are,
for the most part, quite general, and it is hoped that
the results obtained may be generalized to more
physical models than that considered in this paper,
for which similar conditions would be required to
hold.
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It would be very valuable to apply similar techniques
to the Low equation with a 4 x 4 crossing matrix.
However, although work is being done in this direc-
tion, and is discussed quantitatively by Huang and
Mueller, exact solutions to this problem have not yet
been found. An extension to the relativistic case is
very difficult to formulate, and when achieved will
lead naturally, it is hoped, to a prediction of internat
symmetry.

A numerical computation was made of the coupling
constants derived in Sec. III, fort = 1, 2, 3, 4, 5, 6 and
with « = 7.5 (the approximate nucleon-mesonic mass
ratio) for a range of values of 8 from —5 to +5. The
quantitative results are shown in Figs. 1(a) and 1(b).
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APPENDIX. PROOF OF LEMMA

We have
T'3B +t + DIVJ(B — 1))
LB —t + DITEB + 0]

But we may use the representation

I(Z)T(Z,)
D(Z, + ZYT(Z, — Zy)

° Z V4
=TI[1+-2 ][1_ : } A2
Ol+znlli-zanl @
to give

UgB.) = 11 [1 + ;E;T%T)T;]

UyB, t) = (A1)

x[l— ) :]

¥ B+t+1+n)

= B—t+2n4+ 11 _B+1t+2n

“E[ B—t+2n ][B+t+2n+1]'
(A3)

We examine the phase shift contribution from each
bracketed term. Writing

Bet42n+1
g [ Bt 20 1) ooy, (A4
g | =S <o, (a9

B+t+ 2n _

Bt om0y (A5
g[B+t+2n+1:l 7a) - (A3)
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It is easily verified that
itan2¢,(1)

_ 2B — 1)
@B—1)?—{(2t—4n—3)2t —4n — 1]’
But
(2B — 1) = —i(2t + 1) cot y, (A6)
tan 2¢7%(1)

_ 22t + 1)cot p
(2t 4+ 1DPcot®> p + [2t — 4n — 32t — 4n — 1]
(A7)

Similarly
tan 2¢,(1)
B 2(2t — 1) cot g
Tt —1)2cot®y + [2 + 4n + 3][2t + 4n + 1]
(AB)

From (A7), we see that

Agh() =0, if (2t —4n —3)2t —4n—1)>0,
ie., if

< 2n + %,
or if
t>Cn4 1)+ 3
Agi() = Ay,
if
(2t —4n—3)2t —4n— 1) <0,
ie., if
Cn+D)—3<t<@n+ 1)+ 4
Agi(t) = Ay,
if
2t —4n—-3)2t—4n— 1) =0,
ie., if

t=2n+4% or 2n+1)+ 3.
From (8) we see that the denominator is + Ve definite
fort > —1% and so
A () = 0.
If 29, = arg Uy(B, 1),
Ap, =0 if te(n—5,2n+3), 0<s<4,
Ap,=Ay if ten+1—352n+1+453),
0<s <,
Ap, = 3Ay if ¢ = half-odd integer.
For the same result to be true for arg U = arg U, +

arg E we must show that A arg E = 0. We calculate
that

tan arg E

_ tan® (3mt)[tan* 3=B) — 1]

" tan® (A7B) tan? (3nf) — 2 tan® (37 B) + tan® (3art)
The denominator is either + Ve definite or has four
real roots. But all real roots of B = y lie between the
branch points. The lemma then follows.
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An embedding of SU(2) and an internal symmetry group G into a larger group G containing SU(2)

and G as subgroups is constructed for all G possessing a generalized spin-3 quark model.

The starting

point is a set of three mathematical conditions for the embedding group G which are derived from
physically plausible assumptions. By group theoretical techniques due to Dynkin and Malcey, it is
shown that the embedding group is already uniquely determined by the proposed conditions, with only
one set of groups G for which two solutions are obtained. The results for G are given explicitly. 1dentifying
SU(2) as covering of the rotation group the spin extension Gis enlarged to an embeddmg G, of the
homogeneous Lorentz group L, and G. It is shown that G, can also be obtained without using the spin
extension. The minimal translation group which can be attached to G, is calculated. The results are also
taken over to the Budini-Fronsdal identification of SU(2).

INTRODUCTION

F two different and independent parts of a physical
symmetry are known, given by a set of representa-
tions of internal and kinematical symmetry groups
G, and G,, the problem of constructing a larger
group G which combines the two different symmetries
in a nontrivial way, not in the form of a pure direct
product G = G, ® G,, has by itself no unique
mathematical solution. There are different methods to
describe what is meant by “G combines G, and G,.”
For example, one can follow the idea of Michel!
by demanding that G, is invariant subgroup of G and
that G, ~ G/G,, which for the Lorentz group yields a
homomorphic image of the direct product; or one
can consider the multitude of different groups G in
which G, and G, can be embedded, i.e., are con-
tained as subgroups, and which are limited by the
McGlinn-type theorems®? and with respect to mass
splitting by the O’Raifeartaigh-Jost theorem.? Further
physical principles are needed to restrict G, especially
to select one of the possible ways of constructing it
and to assure that G is unique with respect to this
construction. Presumably such physical principles
will be rather stringent and not very transparent.
However, for the embedding of a wide class of
internal symmetry groups, as for instance SU(3),
G,, and Sp(6), with SU(2) describing the spin for
particles at rest, a unique construction of G is formu-
lated in the sequel, characterized by three simple and
physncally plausible conditions. From this unique
spin extension G, a corresponding embedding of the
covering of the homogeneous Lorentz group SL(2, C)
in a group G, can be constructed. If the relation
1 L. Michel, Phys. Rev., 137, B405 (1965).
2 W. D. McGlinn, Phys. Rev. Letters 12, 467 (1964); L. O’Rai-
feartaigh, Phys. Rev. 139, B1052 (1965).
3 L. O’Raifeartaigh, Phys. Rev. Letters 14, 575 (1965); M. Flato

and D. Sternheimer, Phys. Rev. Letters 15, 934 (1965); R. Jost,
Helv. Phys. Acta 39, 369 (1966).

between SU(2) and SL(2, C) is taken over to G and
G, , the result is also unique, but still open to physical
interpretation, leading to different results if the
translation group is attached.

1. FORMULATION OF THE EMBEDDING
CONDITIONS

We look for an embedding of SU(2) and a given
connected Lie group G, describing the internal
symmetry, in G with

SUQ2),G = G,
where = denotes proper inclusion.

(a) Suppose all particles of a G multiplet have equal
spin, then an irreducible representation of G and
SU(2), characterized by a set of quantum numbers d
and one quantum number s, is realized in the same
representation space and the physical multiplets
correspond to a subset of irreducible representations
of G ® SU(2), i.e., G should contain G and SU(2) in
the form of a direct product.

(b) Suppose the irreducible unitary representations
of G and G are finite dimensional, i.e., G and G are
compact. The Lie algebra G° of a compact Lie group
G has the form

C"=H@® - OH,0K]® - ®Kj. (L0
H} are simple compact Lie algebras, and K are one-
dimensional algebras. The corresponding additive
quantum numbers are completely independent of the
rest of the group. In the spin extension this inde-
pendence should be retained so that K? can be dropped.
Then G becomes semisimple.

(¢) Suppose G possesses a sort of quark model by
which we mean that all physically realized representa-
tions can be obtained from Kronecker products (de-
noted by x) of an irreducible representation (d,,) and
its complex conjugate (d,) associated with G-quarks.
The dimension N of (dy) is as low as possible. The
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image of G under the mapping by the quark repre-
sentation is denoted by G which is a unimodular
matrix group for G semisimple. To attach the spin
to the physical particles in a quark model, it is
plausible  to start from spin-} quarks and to restrict
the discussion to such symmetry groups which possess
a spin-} or a generalized quark model, i.e., all physical
representations can be obtained from Kronecker
products of the 2N-dimensional iireducible spin-}
quark representations (dy,%) and (dy,3) of
G ® SU(2).

To translate this model into some properties of
G, a representation (dy) of G should exist which,
restricted to G ® SU(2), is just the quark representa-
tion with no further particles. Hence the dimension
of (JQ) is given by 2N. This condition assures that all
physical representations of G ® SU(2) appear in the
reduction of Kronecker products (dg) X +++ X

(a’()) X o0 X (dQ) to irreducible representations of
G if these are restricted to G, x SU(2). We can
therefore identify G with (d,) and take G as a linear
group of 2N x 2N matrices containing Gg x SU(2):

G = Gy x SUQ). (1.2)

With G not admitting a quark model, the reduction
does in general not lead to all particles. Take for
instance G as isospin group SU(2), then SU(4)
contains SU(2) X SU(2). One gets all irreducible
representations of SU(4) by reduction of SU(4) x - -+
X SU(4), the SU(2) x SU(2) content of which is
calculated from [SU(2) X SUQ)} x -+ x [SU(2) x
SU(2)}, i.e., from

G&GHx o x (3 (1.3)

In (1.3) there are only representations with spin and
isospin being either both integer or half integer.
Hence representations like (3, 0) are not obtained.

(d) Suppose the embedding produces a mixing
between the symmetry groups, thus excluding the
already discussed direct product and a physically
equivalent modification of the direct product. The
trivial case enters if G and SU(2) are embedded in
separate groups H, and H, with G as direct product
G = H, ® H—an example is G = UQ3) ® SU(2)
for G = SU(3). This type of embedding is forbidden
by demanding G not to split into the product of two
groups H,, H, with H, > G, H, > SU(2), that is
if

G< H,

SU(2) < H,, then G # H, ® H,,

(1.4)

which is satisfied if G, X SU(2) is contained in a
simple subgroup of G. For the case of simple sym-
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metry groups G, this requirement can be proved also
to be necessary.

Theorem 1.1: Let the compact Lie group G satisfy
(dg) ® Gy x SU(2) and be a nontrivial spin ex-
tension—defined by (4)—of the simple Lie group G
with the quark representation G, . Then Gy x SU(2)
is contained in a simple subgroup of G = (d).

Proof: An irreducible (see Appendix) compact Lie
group of 2N x 2N matrices can be written in the
form

G=H xH,x--xH,xK,, (15
where H, are irreducible simple compact groups of

; X n; matrices and K, ~ {e*’}.

Smce H=Gg x SU(2) is an irreducible uni-
modular subgroup of G, H can be represented by
Theorem Al (in the Appendix) which is easily carried
over to compact groups (cf., beginning of Sec. 2) in the
form

H=H;xHyx- -+ xH, wth H < H,

(H,,- -, H, irreducible, not necessarily simple).

As both G, and SU(2) are simple and as H is a
representation of the direct product of two simple
groups, at most two nontrivial factors can appear in
(1.6). If there actually are two nontrivial ones, they
must be equal to Gy and SU(2), respectively, and
condition (1.4) is violated. Hence there is only one
factor H, so that G, X SU(2) < H, which proves
the statement. We note that this implies that there is
only one nontrivial H; in (1.5) because of n, = 2N.

(¢) The above requirements must be completed by
a reasonable prescription to choose a ‘“‘smallest”
group under all possible groups G. This can be done
in various ways. We propose to demand G to be
minimal with respect to a set of conditions, which
means that it should have no proper subgroup also sat-
isfying these conditions. Then for an embedding of a
s1mple group G by Theorem 1.1 G becomes also simple
since H, fulfills all requirements for G. For semlslmple
G Theorem 1.1 fails, but we take G as simple also in
this case. Note that the interesting proposed sym-
metries SU(3), G, Sp(6), and B, are simple.

The plausible idea that the number of generators
and (or) the rank of G ® G ® SU(2) should be as
small as possible does not work in general, for ex-
ample, in the spin extension SU(6) of SU(3). This is
shown by noting that SU(3) ® SU(2) is not only
contained in SU(6) but also in SU(5)—evidently
“smaller” than SU(6)—in a different form though,

SU@) 0
( 0 SU(2))

(1.6)
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and in direct contradiction to the quark model.
Because of the success of the quark model one should
not abandon it, although it raises the rank and the
number of generators of G.

(f) The results of this discussion, the requirements on
the symmetry group G and the embedding conditions
for the determination of the spin extension G can be
summarized as follows. Let the compact Lie group
G be an internal symmetry group which admits of a
generalized quark model [cf,, in (c)] with the irre-
ducible group (dg) = G of N X N matrices [accord-
ing to the remarks in (b) and (d) we can take G to be
semisimple and G, to be unimodular].

Conditions for a spin extension G of G:

(«) G is simple and compact;

(B) G is a group of 2N x 2N matrices which con-
tains Gy x SU(2);

() G'is minimal among the groups satisfying («), (8).

It is easy to check that the spin extension SU(6) of
SUQ3) fulfills the above conditions. It was derived
first by Giirsey and Radicati® by using implicitly
similar arguments as above in the discussion of a
special Lagrange function, but a systematic generali-
zation of this field theoretic method to other sym-
metry groups seems to be complicated and more
involved than a pure group theoretical treatment.

In the following sections, we give a full account of
all spin extensions satisfying the conditions (a), (8),
and (y). One would expect a class of solutions G for
every given symmetry G and quark representation Gy .
However, this is not the case: we show that the above
defined spin extension is already unique, with a few
exceptions, for which two solutions are obtained.

2. A UNIQUENESS THEOREM

The evaluation of the postulates is straightforward.
We note as a first simple consequence that G is
irreducible and unimodular, which follows from the
corresponding property of Gy X SU(2). Now all
simple compact irreducible unimodular groups of
2N x 2N matrices containing Gy X SU(2) and
satisfying the minimality condition are possible
candidates for G. A full account of all these groups
can be derived using the theory of Dynkin® and
Malcev.® However, the Dynkin theory gives a classi-
fication for complex Lie groups with respect to a
certain subgroup content and one has to make sure
that results taken over from the Dynkin theory are
valid also for the compact real forms of the complex
Lie groups which occur in G. This is possible.

4 F. Giirsey and L. A, Radicati, Phys. Rev. Letters 14, 57 (1964).
5 E. B. Dynkin, Am. Math. Soc. Transl. Ser. 2, 6, 245 (1957).
6 A. 1. Malcev, Am. Math. Soc. Transl. Ser. 1, 9, 172 (1950).
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There exists a one-to-one correspondence between
the irreducible representations of a compact Lie
group and the irreducible analytic representations of
its complex extension (cf., e.g., Ref. 7), and since the
complex extensions of two different compact semi-
simple Lie groups do not coincide, which follows from
the theorem of Weyl (cf., Ref. 8) stating that a complex
Lie algebra cannot have more than one real compact
form, it suffices to prove the theorem for the corre-
sponding complex extension of the groups.

As for the notation, we use A,, B,,* **,G,
interchangeably for the compact and complex groups
as well as for the corresponding associated compact
real and complex Lie algebras. The complex extension
of the compact unimodular orthogonal group O(n)
is the group O(n, C) of all complex unimodular
orthogonal n X n matrices, for the compact symplectic
group Sp(n), one gets the group Sp(n, C) of all complex
symplectic n X n matrices and for SU(n) the group
SL(n, C) of all complex unimodular # X n matrices.

Now we are prepared to prove the following unique-
ness theorem, stating essentially that the spin extension
is already fixed by the physically motivated conditions
(«), (B), and (y). A collection of some results of the
Dynkin theory used in the proof of the theorem can
be found in the Appendix.

Main Theorem:

(a) Let the irreducible group G, of unimodular
N X N matrices be different from the lowest spinor
representation of B, =~ O(2n + 1), with n 2> 3, i.e.,
not given by the Dynkin diagram

O——O— s+ ~T—B = B,, n23. (I

Then the spin extension G is uniquely determined by
the postulates («), (8), and (y), specifically one has
for N > 3:

SU(2N)if G has no bilinear invariant,
Sp(2N) if G has a symmetric bilinear invariant,

G =
O@2N)if G, has a skew-symmetric bilinear
invariant.
2.2)
For N = 2 one has:
G = SU@4). 2.3)

(b) Let G be given by the lowest spinor representa-
tion of B, n > 3, i.e., by (2.1).

7 G. Krafft, Mitt. Math. Sem. der Universitdt Giessen, Bd. 32
(1955).

8 L. S. Pontrjagin, Topologische Gruppen (B. G. Teubner, Leipzig,
1958), Bd. 1II, p. 226.
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(1) n even: G is uniquely determined by («), (),
and (y), and is given by the lowest spinor representa-
tion of D, ., ~ O(2n + 4),

[
G, = o———o—~-~<:1)m. 2.4)

(2) n odd: There are two solutions G; and G,
satisfying (a), (8), and (y), namely,

|
(}——(}—..-4<::D,,+2 (2.5

S n+1 1
G, = p(27) for in(n 4+ 1) even, 2.6)
o(2*+ty for 4n(n + 1) odd.

Proof of Main Theorem: Let G, be an arbitrary
irreducible group of unimodular N X N matrices.
Because of the above correspondence between com-
pact (real) and complex groups, Theorem A2 of the
Appendix imposes severe restrictions on those irre-
ducible real groups of 2N x 2N matrices which con-
tain H = Gy x SU(2). Since B, ~ 4, ~ SU(2) and
since the matrix group SU(2) is determined by the
Dynkin diagram

t

1

and

i i Al s
Theorem A2 implies that from the compact unimodu-
lar groups only OQ2N), Sp(2N), and SU(2N) can
contain H = G, X SU(2), the only exception being
(cf., Nr. IV, of Table 5 of Ref. 5) the case if G is
given by the lowest spinor representation of B, for
n>3, e,

(n23),
2.7

for in this case H is also contained in the lowest spinor

representation of D,,,~ O(2n + 4), i.e., In

1
O'—‘—'O—"'<:D"+2' (28)

In (2.7), Gy consists of 2" x 2" matrices so that
N = 2",

(1) Proof of Part (b):

With G, given by (2.1), H is a subgroup of G,
specified by (2.4), (2.5), as is shown in (2.8). By
Theorem A4, H possesses a symmetric or skew-
symmetric bilinear invariant according to whether

l
Gy = O——0—+ -+~ B =~ B,
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the invariant of G¢ is skew-symmetric or symmetric,
because SU(2) = Sp(2) has a skew-symmetric invar-
iant. From Theorems A3 and A4 follows

Sp(2mt1) for dn(n + 1) even,
«
o2 for n(n + 1) odd.

(i) n even: The group given by (2.8) has a bilinear
invariant which is symmetric for §(n + 2)(n + 1) even
and skew-symmetric for 3(n + 2)(n + 1) odd by
Theorem Ad4. In the first case, $n(n + 1) is odd, in the
second one {n(n + 1) is even so that by (2.9) the
following proper inclusions hold:

tn(n + 1)

|
Hc o_—--.‘<> [«
0 odd.

By the minimality condition (y), G is realized by (2.4).

(ii) » odd: There is no bilinear invariant for (2.8)
so that it is contained neither in Sp(2"*!) nor in
O(2"1). Conversely, it follows from Theorem A2
that neither Sp(2"*+!) nor O(2"*!) are subgroups of
(2.8). Hence one obtains the two solutions (2.5) and
(2.6) for G.

(2) Proof of Part (a):

() ¥ >3: With G, not being given by (2.1),
Theorem A2 states that the only simple compact
groups which can contain H = Gy X SU(2) are
O(2N), Sp(2N), and SU(2N). Because of the irreduci-
bility of H, the cases O(2N) and Sp(2N) depend on
the type of the bilinear invariant of Gy and are
mutually exclusive. If G, has a symmetric (skew-
symmetric) invariant, / has, by Theorem A4, a skew-
symmetric (symmetric) invariant. The inclusion H <
SU(2ZN) is always true since SU(2N) is the group of all
unitary unimodular matrices. The minimality con-
dition (y) and Theorem A3 then imply Eq. (2.2).

(ii)) N = 2: In order to prove (2.3), it suffices to
show that SU(2) = Sp(2) is the only irreducible
compact group of unitary unimodular 2 X 2 matrices.
For then Gy = SU(2) = Sp(2), and (2.3) follows from
Theorem A2 noting that although SU(2) x SU(2) =
Sp(2) x Sp(2) has a symmetric bilinear invariant, the
inclusion Sp(2) x Sp(2) < O(4) is not proper since
Sp(2) x Sp(2) = O(4). Now let G, be an irreducible
compact group of unitary unimodular 2 X 2 matrices.
G, can be written as a Kronecker product of irre-
ducible compact simple matrix groups. Since there
can only be one factor consisting of 2 X 2 matrices
and since a one-dimensional representation of simple
compact Lie groups is the trivial one, there remains
one factor only. Hence Gy, is simple. The only simple

2.9)

Sp(2™*t1) for fn(n + 1)
even,

o221y for
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compact group of 2 x 2 matrices, however, is SU(2) =
Sp(2). This completes the proof.

3. DISCUSSION OF THE EMBEDDING
CONDITIONS

A. The Case G = SU(N)

Let us consider the special case that SU(N) is
intrinsic symmetry group and that SU(N) can be used
for the construction of a generalized quark model,
i€, Gg = SU(N). Since SU(N) has no bilinear
invariant for N > 2, one obtains as spin extension of

SU(N) the group G = SUQN). 3.1

By (2.3), Eq. (3.1) also holds for N = 2. It is shown
in Theorem 3.2 that SU(N) x SU(2) is even maximal
subgroup of SU(2N). From this it follows that for
Gy = SU(N) one may drop the minimality condition
(), since SU(2N) is the largest group allowed by
postulates («), (#), and because of the maximality of
SU(N) x SU(Q2)in SU(Q2N)itis also the smallest. Since
SU(N)is simple, one may by Theorem 1.1 alternatively
drop the simplicity requirement («) for the spin
extension G.

The well-known spin extension SU(6) of SU(3) is
then uniquely determined by the postulates («), (8),
and (). The fact that SU(3) x SU(2) is the maximal
subgroup of SU(6) has also been noted in Ref. 9.

B. Dropping the Simplicity Condition for G
For a simple intrinsic symmetry group G, the
simplicity of a nontrivial spin extension G follows
from Theorem 1.1 and the minimality condition (y).
It seems therefore worthwhile to investigate the con-
sequences of dropping the simplicity condition for G;
that is, to look what happens in the general case of a
semisimple G if one replaces the postulate («) by:
(«) G is semisimple and compact.
First we note that the irreducible matrix group G
can be written as
G=0G, x - xG,, G, simple,irreducible. (3.2)
The group H = G X SU(2) can be decomposed as
H=G x -x G, x SUQ2),
G, simple, irreducible.
Since H < @, one has by Theorem Al
H=H x--+x H, H;,<(,;, H,irreducible.
3.4
With a suitable numbering of the G, and G,, the H,
can be written as follows:
Hy=G, x" - x G xSUQ),
Hig =G x---xGiK“, K> 1

(3.3)

(3.5)
(3.6)
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In (3.5), there appears at least one G; since the spin
extension G is assumed to be nontrivial.
Now, we note that one has the following inclusions:

Gy X SUQ) < Gy x Hy X *++ x H
cGxGx-xG =06 (37
The group G, X H, x -+ x H, fulfills postulates
(") and () ; hence the minimality condition (y) implies
G=GC, x Hyx -+ x H,, (3.8)
G2 G, x *+* x G x SUQ).
Therefore, one actually has a spin extension of the
group G=G x " xG (3.9)

by the simple group G;. The remaining factors
G; 41, ", G, are not altered. We can formulate
this result as follows.

where

Theorem 3.1: For aninternal symmetry group G with
a decomposition of Gy x SU(2) given by (3.3), one
obtains the set of all spin extensions which satisfy the
postulates (o), (8), and (y) by first considering the
spin extensions of all products G; x --- x G; by
simple groups G, which are determined by the main
theorem, and then forming the Kronecker product
of G; and the remaining G;’s. If the symmetry group
G is not simple, there are in general several spin
extensions satisfying («), (8), and (y).

C. Sharpening of the Minimality Condition (y)

We now turn to the question in which cases the
minimality condition can be sharpened in a plausible
way. For a spin extension G of G constructed by the
postulates (a), (8), and (), there may in general be
groups K which lie between G and G, X SU(2), that
is, one has the proper inclusions

G= K= Gy x SUQ). (3.10)
A compact group K which satisfies (3.10) cannot be
simple by postulate (). From the physical point of
view it would be most satisfactory, if the number of
generators of the constructed spin extension is as low
as possible, i.e., if there exists no such group. In this
case G, X SU(2) is maximal subgroup of G, and it
is plausible to ask if the minimality condition (y)
can be replaced by: (y') G, x SU(2) is maximal
subgroup of G.

Obviously condition (y') implies the minimality
condition (y), since if (") holds there is no group
lying between G and G, x SU(2). Conversely, the
postulates (), (), and (¥) determine the spin exten-
sion G with one exception uniquely. Hence it may
happen that there is no group satisfying the stronger
conditions (&), (#), and (p’) which have a solution
for a given Gy x SU(2) = H if and only if H is a
maximal subgroup of the group G constructed from
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the postulates («), (8), and (y). The following theorem
completely answers this question.

Theorem 3.2:

(a) Let the group G, be different from the lowest
spinor representation of B, , n > 3, i.e., not given by
(2.1), and let G be the group uniquely determined by
the postulates («), (8), and (y). Then Gy x SU(2) is
maximal subgroup of G if and only if G, = SU(N),
O(N), Sp(N).

(b) Let G, be given by the lowest spinor representa-
tion of B,, i.e., by (2.1). Then G, X SU(2) is maximal
subgroup of G, in (2.4) and (2.5), but not of G, in
(2.6).

Proof:

(a) Sufficiency: If Gy = SU(N), O(N), and Sp(N),
then by the Main Theorem, G = SU(2N), Sp(2N),
O(2N) respectively. Assume that G, x SU(2) is not
maximal in G. Then there is a group K lying between
Go X SU(2) and G. Going over to the complex
extensions one gets for SU(N)

SL(N, C) x SL2,C) < Ko = SL(2N, C), (3.11)
where K denotes the complex extension of K. If K
is different from G, x SU(2) and G, so are their
complex extensions. But by Theorem A5, SL(N, C) x
SL(2, C) is maximal subgroup of SL(2N, C), in con-
tradiction to the assumption. For O(N) and Sp(N)
one proceeds on similar lines, applying Theorem A6.

Necessity: Assume G, different from SU(N), O(N),
Sp(N) [and (2.1)]. If G, has no bilinear invariant,
G = SU(2N) and one has the proper inclusions

Gy x SUQ2) @ SU(N) x SUQ2) = SU22N). (3.12)

If Gy has a symmetric (or skew-symmetric) bilinear
invariant, one has G = Sp(2N) [or O(2N), respectively]
and the proper inclusions
Go X SU(2) = O(N) x SU(2) = Sp(2N)

(symmetric),
Go x SUQ2) © Sp(N) x SU(2) = O(2N)
(skew-symmetric). (3.14)
Hence, in this case Gy X SU(2) is not a maximal
subgroup of G.

(b) Let G, be given by (2.1), the lowest spinor
representation of B, , n > 3.

(i) Let G, be given by (2.4) or (2.5), the lowest
spinor representation of D,,,. As G, is simple and
different from Sp(2N) and O(2N), one can, after
complexification, apply Theorem A2. Any group
lying between G, x SU(2) and G, is irreducible and
unimodular. These subgroups of G, ~ D, ., are given
by Theorem A2. Inspection of Table Al shows there
is none which has G, x SU(2) =~ B, ® A4, as proper
subgroup. Hence in this case Gy x SU(2) is maximal
subgroup of G, .

(3.13)
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(ii) Let G, be given by (2.6), i.e., G, = Sp(2™+1) or
O(2"*1). Then G possesses a bilinear invariant, and
one has the proper inclusions

Gy X SUQ2) = 0Q2") x SU(Q2) = Sp(2"+)

Gy x SUQ2) = Sp2™) x SU2) = 0O(2"*).
Hence in this case G, x SU(2) is not maximal
subgroup.

D. On the Choice of the Generalized Quark
Representation G

The representation of the symmetry group G used
in the formulation of the postulates («), (8), and ()
is essential for the determination of the spin extension
G. Demanding the representation G, to be as low
dimensional as possible does not, in general, determine
Gy uniquely. It can happen that there exist several
inequivalent representations of G with equal dimen-
sionality which could be used for a generalized quark
model. One could, for instance, take the complex
conjugate representation G instead of G,. So the
question arises how a different choice of G, affects
the result of the spin extension.

A representation D(g) of a Lie group G has a non-
degenerate bilinear invariant if and only if D is equiv-
alent to the contragredient representation D(g—)7
(Ref. 5 Theorem 0.19). For compact groups, the
contragredient and complex conjugate representations
are equivalent. Since in the determination of the spin
extension G in the Main Theorem only the nature of
the bilinear invariant of G, enters and since either
G and G have the same kind of invariant or both
G, and G'Q have no invariant at all, one notes that
the result G of the Main Theorem is independent of
whether one uses G, or G .

We now discuss the more general case that G and
G, are two inequivalent quark representations of
equal dimensionality where furthermore G, # Gg, .
The corresponding spin extensions are denoted by
G, and G,. By the same argument as used before, it -
follows that G, = G, if G, and G have the same
kind of bilinear invariant or if both matrix groups
have no bilinear invariant. G, # G, if and only if
one of the groups has a bilinear invariant while the
other has none or if one has a symmetric, the other
one a skew-symmetric invariant.

This case cannot occur for G simple and G, the
lowest nontrivial representation, since simple groups
have at most two inequivalent lowest nontrivial
representations which, however, are contragredient to
each other. This follows from the formulas for the di-
mensions of the irreducible representations (cf. Ref. 5).

In the case G = B, or D, one could try to take the
lowest spinor representation for the generalized quark
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model. For B, there is only one such representation
while for D, there exist two inequivalent ones. For
D,,., these two lowest spinor representations are
contragredient, since according to Theorem A4 there
are no bilinear invariants, and consequently, the
representations are inequivalent to their respective
contragredient ones. Hence they must be contragredi-
ent to each other because there are only two such
lowest spinor representations. So for D,,,, the spin
extension is not affected. For D,, both of the lowest
spinor representations have the same kind of invariant,
according to Theorem A4, so that G} = G,.

For nonsimple symmetry groups the situation
becomes complex. In any case, for given symmetry
groups one has to choose the quark representations
according to their physical usefulness.

4. APPLICATIONS

The explicit construction of the spin extension G
for special internal symmetry groups G consists of
two steps: (1) A discussion of the existence of a
generalized quark model and the determination of G, .
(2) Calculation of the type of bilinear invariant of G,
using Table AII

For the recently discussed groups SU(3),'* G,,"
and Sp(6),'2 a quark model holds. For B; (Ref. 13) a
quark representation which includes hadrons as well
as leptons is incompatible with the identification
given in Ref. 13 and does not exist. This can be shown*
in a similar way as in the discussion of SU(2) x
SU(2) in Sec. 1. However, in this case a quark repre-
sentation involving hadrons only is possible. With the
invariants from Table All, we obtain by the Main
Theorem the results of Table 1.

To justify this extension procedure, one has to
determine the G, subgroup content of a given
irreducible representation of G, i.e., the branching
rules G | Gy X SU(2). For the mathematical methods
of this reduction we refer to Ref. 15. A detailed
discussion of the groups Sp(6), G,, and B, is given
elsewhere.}4-1¢ It turns out that the spin extension of
the van Hove triplet model Sp(6), given by O(12),
yields the quite satisfactory result that, similar to

1 M. Gell-Mann and Y. Ne’eman, The Eightfold Way (W. A.
Benjamin, Inc., New York, 1964).

11 R. E. Behrends and L. F. Landowitz, Phys. Rev. Letters 11,
296 (1963); Y. Dothan and H. Harari, Nuovo Cimento 32, 498
(1964); R. E. Behrends, Phys. Rev. 142, 1101 (1966).

12 H. Bacry, J. Nuyts, and L. van Hove, Phys. Letters 9, 279
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TaBLE . Spin extension of some
symmetry groups.

Symmetry group  Spin extension

SUB3) SU(6)
Sp(6) 0(12)
G, Sp(14)
B, =~ O(T) Sp(14)

the spin extension SU(6) of SU(3), the scalar meson
octet and the nine vector mesons as well as the baryon
octet and decuplet can be fitted in one irreducible
0(12) representation with no more additional par-
ticles necessary than already in the Sp(6)-scheme. A
comparison with a spin extension of Sp(6) obtained.
by a different method'’ can be found in Ref. 18.

For G,, which has been discussed as an alternative
for SU(3), the spin extension Sp(14) leads to a large
number of additional particles if one tries to classify
the known G,-multiplets according to Sp(14). The
same is true for the spin extension of B for which one
obtains also Sp(14), with a different physical inter-
pretation though, since here one has to determine the
B; ® SU(2)-content of Sp(14)-representations.

5. LORENTZ EXTENSION

Looking for a group G comprising the covering L
of the inhomogeneous Lorentz group and an internal
symmetry group G, it suggests itself to start from the
spin extension G of G and enlarge it such that it con-
tains L. There are many ways of doing this. In the
following, we discuss two possible approaches which
essentially differ in the interpretation of the group
SU(2) which was used in constructing G. (A) SU(2)
is identified as the covering of the rotation group,
originally suggested in the case of SU(6) @ SU(3) x
SU(2) by Fulton and Wess and Riihl.?® This (FWR)
approach leads to a large number of additional
translations and to possible difficulties with unitarity.
(B) SU(2) here also transforms like the rotation group
under homogeneous Lorentz transformations, but it
is not identified with physical rotations. Furthermore,
SU(2) is assumed to commute with the space-time
translations. For SU(6) this idea was proposed by
Budini and Fronsdal,?® it leads to difficulties in the
field-theoretic formulation which are connected with
locality.

A generalization of the interesting U(12)-theory of

17 V. G. Kadyshevsky, A. N. Tavkhelidze, and I. T. Todorov,
Phys. Letters 15, 180 (1965).

18 H. D. Doebner and G. C. Hegerfeldt, in Elementary Particles,
P. Urban, Ed., (Julius Springer-Verlag, Berlin, 1966), p. 369.

19 T. Fulton and J. Wess, Phys. Letters 14, 57 (1965); W. Riihl,
ibid. 13, 349 (1964).

20 p, Budini and C. Fronsdal, Phys. Rev. Letters 14, 968 (1965);
C. Fronsdal, Trieste Lectures (1965); V. Schladming, Lectures (1966).
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Delbourgo et al.?! seems to be not so straightforward
and is not discussed here. We note that U(12) does
not obey our minimality condition which shows that
one might lose physical information by this restriction.

A. Generalization of the FWR Approach

To construct G starting from the identification of
SU(2) as covering of the physical rotation group, we
carry over to G a procedure?? already used for SU(6)
by considering the groups H of 2N x 2N matrices
which contain G and SL(2, C) in such a way that their
intersection corresponds to SU(2).

By (1.2), S¥U(2) was embedded in G in the form
ly X SU(2), the Kronecker product of the N X N
unit matrix iy with SU(2), so that SL(2, C) should
liein H as 1y x SL(2, C). We therefore demand

Gc H, 1yx SL2,C)< H, (5.1a)
GNl,yxSLR2,C)= 1y x SUQ2), (51b)

and take for G, a group minimal with respect to (5.1).
If two groups H,, H, fulfill (5.1), so does their inter-
section. Therefore, G, is uniquely determined and is
equal to the intersection of all groups H satisfying
(5.1). The difference to the problem of constructing a
spin extension is contained in (5.1b), expressed
graphically by Figs. 1 and 2.

Theorem 5.1: The smallest group of 2N X 2N
matrices satisfying Eqgs. (5.1) is the complex extension

Gy of G,
Co Gh=GC'

Proof: Letting the parameters of the compact group
G become complex, one gets the complex extension
G of G which corresponds to the complex extension
of the Lie algebra of G (cf., the proof of the Main
Theorem). The linear group H = G satisfies (5.1)
since it contains the complex extension SL(2, C) of
SU(2). On the other hand G is, as a real form of the
simple complex group G, a maximal subgroup of G
(cf., Ref. 5, Theorem 1.6) so that G, is the smallest
group H satisfying (5.1) since G itself does not fulfili

(5.1).

(5.2)

21 R. Delbourgo, A. Salam, and J. Strathdee, Nuovo Cimento
36, 689 (1965); R. Delbourgo, A. Salam, and J. Strathdee, Proc.
Roy. Soc. (London) A284, 146 (1965).

22 T, Michel and B. Sakita, Ann. Inst. Henri Poincaré 2, 167
(1965).

FiG. 2. Embedding of SL(2, C).

For the case of G = SU(6), Theorem 5.1 gives the
familiar result G, = SL(6, C).

In order to take the translation group 7 into
account, physical interpretation suggests the require-
ment that T, should be invariant under G, and trans-
form under Lorentz transformations in the usual way.
In general, however, this is impossible as is well known
for SL(6, C) (Ref. 19). For let g be an element of G,
and 7 be an element of an arbitrary translation group
T. Invariance of T then means that grg~! is again in 7.
The mapping x(g):t —gig™! (5.3)
of T'onto T'is an automorphism of 7, and the mapping
g — a(g) is a homomorphism of G, into the group of
automorphisms of T. This group is just given by the
set of nonsingular linear transformations of T, bearing
in mind that T is also real vector space.

Hence g — a(g) is a representation of G, by linear
transformations of this real vector space 7. Now, G,
in general does not have a real 4-dimensional repre-
sentation in which the representation matrices of
ly x SL(2, C) act as Lorentz transformations. A
possible way out of this difficulty is to embed T, in
a larger group T and to demand the invariance of T
under G, naturally choosing 7 as small as possible.
The dimension of T is uniquely determined by G, .
The familiar 36-dimensional translation group T
constructed for SL(6, C) is a special case of the
following result (parity is not taken into account).

Theorem 5.2: For G, = G = SL(2N, C), OQ2N, C),
Sp(2N, C), the smallest translation group T which is
invariant under G, and which contains a 4-dimensional
subgroup T, on which the homogeneous Lorentz
transformations embedded in G, act as on space-time
translations, is (2N)? dimensional.

Proof: The dimension of T cannot be smaller than
that of the lowest nontrivial real representation of
G,. For G, = SL(2N, C), O(2N, C), Sp(2N, C), this
representation is (2N)? dimensional, and there is one
and only one real representation of this dimension,
as is easily deduced from Ref. 23. So one only has to
show that in 7T the space-time translations can be
embedded in the required way. To do this, we
explicitly construct the representation of G,.

23 I, Schur, Sitzber. Preuss. Akad. Wiss. Berlin, 100 (1928);
R. Brauer, ibid., 626 (1929); E. Mohr, Ph.D. thesis, Géttingen (1933).
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The set {h,y} of all Hermitian 2N x 2N matrices
forms a real (2N)? dimensional linear space. In {h,,}
we embed 7 as
‘ Ty~ 1y X {hy}. (5.4)
The action of G, = G, on {h,,} we define by

hon E’ Yoy * hay - J’:N > (5.5)

where the 2N x 2N matrix y,, is an element of G,,
¥\ being its Hermitian conjugate. The matrix on the
right-hand side of (5.5) is obviously also Hermitian.
One easily checks that (5.5) determines a nontrivial
representation of G, by linear transformations of the
real linear space {h,,}. For y,\ in 1y X {y,},

Yoy = 1y X py (5.6)

with y, in SL(2, C), and for h,y in 1y X {h} = T,
one finds from (5.5),

2 Tyoda Ly X (yahoy3).

Iy xh (5.7)

This is the action of the Lorentz transformation y,
if one realizes the group of space-time translations
by {h,}. Q.E.D.

By combination of Theorems 5.1 and 5.2, we obtain
as Lorentz extension
Texyr ® SL2N, C)  for

~

G = SU(2N),

G = {Tex? ® O2N,C) for G =O0Q2N), (58)

Ten ® SP(2N, C) for G = Sp(2N).

The semidirect product is specified by stating that
in the realization of T ,y,. as the real linear space
{h,\-} of Hermitian 2N x 2N matrices the action of
the second factor on T,y is given by (5.5).

The homogeneous Lorentz extension G, of G can
also be obtained without using the spin extension G
as intermediate step if one adapts the postulates
(), (B), and (y) by a slight alteration to the covering
SL(2, C) of the homogeneous Lorentz group.

In analogy to the relationship between the complex
Lie group SL(2, C) and SU(2) we demand that:

(@) G, is simple and complex,

(B) G,is a group of 2N x 2N matrices which
contains Gy x SL(2, C),

($) G, is minimal among the groups which satisfy
(%) and (9).

(%) and (B) imply that G, contains Gy¢ X SL(2, C)

with G the complex extension of G, . So the theo-

rems of the Appendix can be used to determine G,.

A practically literal repetition of the arguments leading

to the Main Theorem for spin extensions renders its

generalization to homogeneous Lorentz extensions.

The only change is that instead of G its complex

extension G, appears. Therefore one obtains by

H. D. DOEBNER AND G. C. HEGERFELDT

(&), (B), and () for G, the same solutions [Eq. (5.2)]
G-h = c‘ic
as in Theorem 5.1.

The postulates (&), (#), and () do not possess the
same direct physical interpretation as («), (8), and (y).
This is a disadvantage and indicates that the Lorentz
extensions constructed above might be unphysical.

B. Generalization of the Budini-Fronsdal Approach

In terms of Lie algebras, one formulates the assump-
tion that the subgroup SU(2) of the spin extension G
transforms under homogeneous Lorentz transforma-
tions like the covering of the rotation group by
associating a set of generators {I;,i =1, 2, 3} with
SU(2), a corresponding set I, with rotations and a
set L,, with the homogeneous Lorentz group and
demanding that the commutators of L,, with I, and
L,, with I, are described by the same structure con-
stants. Then it can be shown?® that G must be enlarged
to a group .S which contains not only SU(2) but also
the group SL(2, C) isomorphic, though physically
not identical to the homogeneous Lorentz group.

For this group S, there is a multitude of possible
candidates; we note, however, that the situation is
similar to that in A. So, repeating the argument for
the construction of G,, one finds

S =G,
the complex extension of G.

To combine S with the covering L of the inhomo-

geneous Lorentz group L, one now takes a semidirect

product
(5.10)

(5.9)

G=SQ®L,

which is specified in general by a homomorphic
mapping of -

L~T,®SL2,C)
into the group Aut S of automorphisms of S, and in
this case by the following mapping into the group
int (Aut S) of inner automorphisms of S.

Let y be a homogeneuos Lorentz transformation,
denote by y’ the corresponding element of SL(2, C)
S, and let int ()") be the element of Aut S generated
by y" and acting in S as int (y') g = y'gy’ L.

Then the mapping L — Aut S is given by

y—int(y) and T,—1. (5.11)

This is a formulation of the statement that SU(2) < §
and SL(2, C) < S transform like the rotation and
Lorentz group respectively and commute with the
translations.
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APPENDIX

In this appendix we present some results on irre-
ducible matrix groups due to Dynkin® and Malcev®
which were used in the proofs above.

A linear or matrix group is called irreducible if
there is no proper nontrivial subspace of the space in
which the linear transformations operate which is
left invariant by each group element. In the following,
all groups are connected complex Lie groups of
matrices.

Theorem Al (Theorem 2.2 of Ref. 5): Let
G*=6Gf x- - x Gy, (A1)
where G¥, - -+, Gy are irreducible simple groups of

unimodular matrices. Every irreducible subgroup G
of G* can be represented in the form

G=G X" X Gy,
-, G, are

(A2)
where G, - irreducible groups and

G, < G!.

Two inclusions G < G* and G; < G¥ are said to
belong to the same “type” if G is equivalent to G,
and G* equivalent to Gf¥. The inclusions G < G*
and G, < G¥ are called “equivalent” if there exists an
isomorphic mapping of the space on which the first
pair of groups acts onto the space on which the second
pair acts such that the first pair of groups is carried
by the mapping into the second. In general, a class of
inclusions of the same type can split into several
classes of equivalent inclusions.

Theorem A2 (Theorem 2.3 of Ref. 5):
(a) A complete classification of all inclusion types
G < G* where G and G* are irreducible groups of
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unimodular linear transformations and where G* is
simple and distinct from SL(N), Sp(N), and O(N),
is given by Table 5 of Ref. 5. All cases of nonsimple
G—only these are needed in the preceding proofs—
are listed in Table Al

(b) Every inclusion type among irreducible groups
of unimodular linear transformations of Table Al
and with SL(N, C), Sp(N, C), and O(N, C) as con-
taining group G* consists of equivalent inclusions.

There remains to classify the irreducible complex
connected subgroups of SL(¥N, C), O(N,C), and
Sp(N, C). The case of SL(N, C) is trivial since every
group of unimodular N x N matrices is contained
in SL(N, C).

O(N, C) and Sp(N, C), respectively, consist of all
unimodular linear transformations A of the N-dimen-
sional complex vector space RV which leave invariant
a symmetric or, respectively, a skew-symmetric
nondegenerate bilinear form Q(x, y),

O(Ax, Ay) = Q(x,y) forall x,yeRY,

0(x,¥) =0 forall yeRY ~ x,=0.
(A3)
The specific choice of the form Q(x, y) is inessential
because two such forms, which are either both sym-
metric or both skew-symmetric, can be transformed
into each other.

Theorem A3 (Ref. 5): A group G of unimodular
linear transformations is contained in O(N, C) or
Sp(N, C) if and only if it has an invariant non-
degenerate symmetric or, respectively, a skew-sym-
metric bilinear form. If G is irreducible, these two
possibilities are mutually exclusive (since an irreducible

TasLe Al Inclusion types for nonsimple irreducible G and simple G* % SL(N, C), O(N, C), and Sp(N, C).

Inclusion type

Dynkin Dynkin

Nr G < G* diagram of G diagram of G*
nl_>_l |

l |

Vo  (Bn BpLDptngy) "2zl oo-aB 00T o—o—o{
| 3 !

IVz3 (B, -ACD,,3)n>2 0—0—0-- o 0~0—0--

. (A -ACD.) 33 ‘
Vg 1A Ps SJe
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group cannot have both a nondegenerate symmetric
and a nondegenerate skew-symmetric form).

We note that if a compact group G of uniiary
matrices has an invariant form Q(x,y) then the
complex extension of G also leaves Q(x, y) invariant
since the invariance of Q(x, ) is an algebraic identity
for the matrix elements which are analytic functions
of the group parameters. On the other hand, if the
complex extension of G leaves Q(x, y) invariant, so
does G.

" Theorem A4 (Ref. 6). All simple irréducible groups
of the type B,, C,, Dy, Gy, Fy, E,, Eg have bilinear
invariants. Irreducible groups of type A4,, Dapi1, Eg
have bilinear invariants if and only if the numbers in
the associated Dynkin diagrams are symmetrically
distributed as in (A4).

a as 03 Qg 0y 0,3 02 Q)

G. C. HEGERFELDT

A semisimple irreducible group has a bilinear invariant
if and only if the connected parts of the associated
Dynkin diagram correspond to simple groups with
bilinear invariants. In order to see if the invariant is
symmetric or skew-symmetric, one multiplies each
Dynkin number of a Dynkin diagram corresponding
to a simple group by the respective number given in
Table All and adds the products. The invariant is
symmetric or skew-symmetric according to whether
the sum of these products is even or odd.

For the discussion in Sec. 3 some theorems on
maximal subgroups of SL(N,C), O(N,C), and
Sp(N, C) are needed.

Theorem A5 (Theorem 1.3, Ref. 5): The set of
matrices

SL(s,C) x SL(t,C) (st=N,2<s5<1t) (AS)

is a maximal subgroup of SL(N, C). The irreducible

A nonsimple maximal subgroups of SL(N, C) are ex-
n O—O—0—0Q *#+ O—O—O—0 hausted by the subgroups of this type (to within
conjugacy).
on_| on-aqn_3 02 Ol Theorem A6 (Theorem 1.4, Ref. 5): The set of
0 0 0 O eeene s matrices
2k+l Sp(s,C) X O(t,C) (st =N;s>2,t>3,1t4;
9 or s=2,t=4) (A6)
a Q. O. Q. @ is maximal subgroup of Sp(N, C). Every irreducible
I "2 "3 72 71 nonsimple subgroup of Sp(N, C) is conjugate in
E 6 . Sp(N, C) to one of the groups of the form (A6). The
set of matrices
% (A4 Sp(s, C) x Sp(t,C) (st=N,2<s<t) (A7)
TaBLE All Calculation of the bilinear invariant (by Theorem A4).
An Bn Cn Dﬂ
‘ ' TalasD) DS R 1)) IO
n-l 2 né 2 2
£(n-l)2 %(n-l)(ne) ?(n D(n+1) C%J,,_a)(,, N
2 (n-2)3 (n-2)n3) (n-2)(n+2) (n-3Xn+2)
G (n-kel)k O (n=k+)(n+k) @ (n-k+1)(nvk- 1) O (n-k Hn+k- -2)
2(n-0 2{2n-)) 2(2n-2) 2(2n-3)°
I-n 1-2n I-(2n-1) 1-(2n-2)
Ee Es Eg Fa )
et e, ———— p——P e —— f—nn
16 34 92 22 ﬁ 10
30 66 182 42 6
42 96 270 30
22530 49 0 75 136 0 220 16
16 52 168
27 14
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and

OOy x 0,0 (t=N,3<Ls5<Lt, 5,154
(A8)
are maximal subgroups of O(N, C). Every irreducible
nonsimple subgroup of O(N, C) is conjugate in the
group of all orthogonal matrices (proper and im-
proper) to one of the groups of the form (A7) or (A8).

We note that O(2, C)is Abelian and hence reducible

andthat 4 ) = $p(2, ) x Sp2, C).  (A9)
From this one has for s # 2 the following proper
inclusions:
Sp(s, C) x 04, C)
= Sp(s, C) x Sp(2, C) x Sp(2, C)
< 025, C) X Sp(2, C) = Sp(4s, C).
Hence Sp(s, C) x O(4, C) is not maximal in Sp(4s, C)
[cf., (6)]. In the same way one has for s > 3
O(s, C) x 04, C)
= 0(s, C) X Sp(2, C) x Sp(2, C)
= Sp(2s, C) x Sp(2, C) = O(4s, C),
therefore, the restriction s, ¢ # 4 in (A8). In (A7) one
has for s =t = 2.

Sp(2, C) x Sp(2, C) = 0(4, C),
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so that Sp(2, C) x Sp(2, C) is no proper subgroup
of 04, C).

Summary of the Appendix: Let U be an irreducible
connected complex Lie group of unimodular N x N
matrices. A simple complex Lie group of ¥ X N
matrices which contains U is in general equal to
SL(N, C), O(N, C), or Sp(N, C), the exceptions being
specified by Theorem A2. U is subgroup of O(¥, C) or
Sp(N, C) if and only if it has a symmetric or, respec-
tively, a skew-symmetric bilinear invariant, the form
of which is determined by Theorem A4. U is a maximal
connected subgroup (up to conjugacy)

of SL(N, C) if and only if
U= SL(5, C) x SL(¢, C),
of Sp(N, C) if and only if
U= Sp(s,C) x O(,C), st=N,
s>2, t2>3 t#4;
of (N, C) if and only if
U=036,0x 01,0, st=N, 3<s<1
s, t#4

st=N, 2<s5L1;

or s=2, t=4;

or
U= 8p(s,C) x Sp(t,C), st=N, 2<s<1.
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In a previous paper, it was shown that any function ®(G), defined for a general linear graph G and
having the extensive property, can be expanded in terms of the lattice constants of connected subgraphs
of G. In this paper, a graphical interpretation of the weight factors occurring in this expansion is given.
The usefulness of the expansion in deriving series expansions for properties associated with crystal
lattices is discussed with particular reference to percolation problems, dilute ferromagnets, and lattice
gases. A result in the theory of linear graphs, recently proved by Rushbrooke in a paper concerned with

dilute ferromagnets, is rederived.

1. INTRODUCTION

HE general theory of linked-cluster expansions for

the many-body problem has received much
attention in the literature. Because of its generality,
it is not always clear what conditions are necessary
for its application to problems involving crystal
lattices. For such problems, the theory takes on a
purely algebraic form and has been developed from
first principles in a recent paper,! hereinafter referred
to as L.

1 M. F. Sykes, J. W. Essam, B. R. Heap, and B. J. Hiley, J. Math-
Phys. 7, 1557 (1966).

The use of lattice constants®2 has been found to be
of great practical importance in this field, and high-
order tables of these are now available. Consequently,
it is very useful to formulate a theory in terms of these,
Precise definitions of the various types of lattice
constant have been given in I in terms of the theory
of linear graphs. The most important result of I, in
the present context, was that any function ®(G),
defined for a general linear graph G and having the
extensive property that

DG U G') = O(G) + DG,
2 C. Domb, Phil. Mag. Suppl. 9, 149 (1960).

(L.1)
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order tables of these are now available. Consequently,
it is very useful to formulate a theory in terms of these,
Precise definitions of the various types of lattice
constant have been given in I in terms of the theory
of linear graphs. The most important result of I, in
the present context, was that any function ®(G),
defined for a general linear graph G and having the
extensive property that

DG U G') = O(G) + DG,
2 C. Domb, Phil. Mag. Suppl. 9, 149 (1960).

(L.1)
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can be expressed in the form

k

O6) = Zlf (c)m(G), (1.2)
where G is any graph in which each component is
isomorphic with one of the connected graphs ¢, « - * ¢,
7{G) is the weak or strong lattice constant of ¢, in G,
and f{(c;) is a weight function independent of G, which
is a linear combination of the @’s for the connected
subgraphs of ¢; [see, for example, Eq. (5.1)]. The
derivation of (1.2) is summarized later in Sec. 2 in a
form due to Sykes.® Equation (1.2) is the lattice
problem equivalent of the linked-cluster expansion,
the right-hand side being a sum over connected
graphs. Its application to problems involving crystal
lattices becomes clear if the sites of the lattice are taken
to be the vertices of G, and if, as is usual but not
necessary, the nearest neighbor bonds are taken to be
the edges of G. Thus, a lattice may be thought of as an
infinite connected linear graph. For mathematical
purposes, it is convenient to consider first the case
when G is finite and to approach the infinite lattice by
a sequence of finite graphs.

In I an algebraic expression for f(c,) was given. It
is the object of this paper to provide a simple
graphical interpretation of the f(c;). As a result of
this, it is possible to write down the weight of any
particular graph without knowing the weights of its
subgraphs. This is important in developing expansions
to high order, since it enables spot checks,

Because of the simplicity of our result, it is possible
to see under what conditions the f(c,) are independent
of the list of connected graphs ¢; - ¢;. In I the
complete list of connected graphs was taken, but this,
however, is by no means necessary. This aspect of the
theory is discussed in Sec. 5. Also in this section,
the application to infinite lattices is discussed with the
object of deriving power series expansions which is
then illustrated by applying the theory to percolation
problems, dilute ferromagnets, and the hard square-
lattice gas.

As a by-product of this work, an important result
in a recent paper of Rushbrooke? is rederived [see
Eq. 4.7)].

2. SUMMARY OF CLUSTER EXPANSION
THEORY

In this section, the cluster expansion theory given
in I is summarized. The weak lattice constant (G’; G)
of a linear graph G’ in a linear graph G is the number
of subgraphs (see I) of G isomorphic with G’. The
strong lattice constant [G'; G] is the number of

8 M. F. Sykes, private communication.
4 G. S. Rushbrooke, J. Math. Phys. 5, 1106 (1964).
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section graphs (see I) of G isomorphic with G'. For

T AP
A

Denote by c;, the ith graph in a complete list of
connected graphs with no multi-edges or loops, and
suppose that they have been ordered in such a way
that

but

(csep=lese]=0 for i>].
Such a list is called a graph dictionary, and the graphs
are referred to as being in dictionary order when it is
wished to stress the order. For instance, the list may
begin as follows:

The subsequent theory applies to any function ®(G)
defined for a graph G and which has the extensive

property,

®6) =3, D(c;)75(G), 2.1

where 7¥(G) is the number of components of G
isomorphic with ¢;, and k is some arbitrarily chosen
integer independent of G, such that #}(G) = 0 for
J > k. In practice, this imposes no restriction on G,
since k can be chosen as large as we please. Equation
(2.1) is derived by successive applications of (1.1),
using the fact that G is the union of its components. If
G is connected, the sum reduces to a single term and
is trivially satisfied. An example of the class of function
considered is the free energy of a Heisenberg or Ising
ferromagnet which may even be diluted with non-
magnetic atoms. In this case, the vertices of G
represent spins, and the edges of G represent possible
interactions (see Sec. 7).

To obtain a cluster expansion for ®(G), it is
necessary to express the #}(G) in terms of the lattice
constants of G corresponding to connected graphs.
The theory is valid in either weak or strong lattice
constants, and we use m{G) to denote either (¢;; G)
or [¢;; G, depending on whether weak or strong
lattice constants are being used. Since only connected
subgraphs or section graphs of G are being considered,

7(G) = élA,-jﬂ'?(G), 2.2)
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where A;; is either (c;;c;) or [c;; ¢;], depending on
which set of lattice constants are used. By our choice
of ordering,

Ai:i = 0,

=1,

i>]
i=j,
so that det {A;;} = 1, and Eq. (2.2) may be inverted to
yield

(2.3)

k
7(G) = X T;um(G), 24)
where I';; = (A™1),,. Substituting (2.4) into (2.1) and
interchanging the order of summation, we obtain the
required cluster expansion,

OG) = glf (c)7(G), (2.5)

where

OB L .

It is thus a direct consequence of Eq. (2.1) that ®(G)
may be written as a linear combination of lattice
constants of the connected section graphs or subgraphs
of G only, the weight functions f(c,) being determined
in terms of the ®’s for connected graphs and the T';.
The weight functions are thus independent of G, and
the I';; are the same for all functions ®. The main

WATAYA

o I 2 3 3
/01 2 3
(A = ,
Aee o
Aoo 0 1
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purpose of this paper is to provide a graphical
interpretation for the I';;, an algebraic expression for
which has already been given in I.

3. WEIGHT FACTOR DETERMINATION

In this section, we first introduce the concept of a
full perimeter lattice constant. The strong full perim-
eter lattice constant [G'; G]¥ of G’ in G is defined to be
the number of section graphs of G isomorphic with G,
with the restriction that all the vertices of G not in G’
(if any) must be adjacent to vertices of G'. For example,
[c1; cs]F =1, whereas [c;; ¢3] = 3. The weak full
perimeter lattice constant (G'; G)¥' of G' in G is
defined to be the number of subgraphs of G isomorphic
with G', with the restriction that all the edges of G not
in G’ (if any) are incident with vertices in G'. For
example, (c,; ¢,)¥ = 0, whereas (¢;; ¢,) = 3.

Our results may now be stated as

I = (=D "(es; ¢)), (3.1)
Ty = (=D c;; ¢,17, (3.2)
where v; and /; are, respectively, the numbers of
vertices and edges in ¢;, and the superscripts on I';;

distinguish weak and strong cases. To illustrate our
result, the matrices relevant to the case k = 4 are

® 1 -2 1 0
/ o 1 =2 3
{re} = ,
A 0 0 1 -3
A 0 0 0 1
[ ] / A A
® 1 -2 1 3
/ 0 1 -2 -3
{ng} =
A 0 0 1 0
A 0 0 0 1
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To prove (3.1), it is sufficient to show that
2 (=) l(es; e (Cms €)) = 055

The proof is based on a well-known theorem in the
theory of probability. Suppose that A;, 4,, -+, Ay
are N events which are not necessarily mutually
exclusive. Denote by A7 the event that the ith set of r
events chosen from A,, -, Ay all occur (the order
of choice beingirrelevant), and by 4, U 4, U -+ - U4,
the event that at least one of the events 4,, 4,, - -,
Ay occurs; then, of P(4) denotes the probability of
occurrence of event A,

P{A, U A; U U Ay} =3 P4} — 3 P{AY}
+ X P{Al} — 3 P{4l} + - £ P{4}'}, (3.4)

. . N
where the rth summation contains (r) terms.

(3.3)

Equation (3.4) is proved in Ref. 5 and is related to the
principle of inclusion and exclusion.

Suppose now that the edges of a graph G are
colored at random (colored black with probability p,
and colored white with probability 1 — p). Any
realization of the probability distribution defines a
partial graph Py of G consisting of all the vertices of G
and the black edges.

Theorem I: The probability P(p; ¢;; G) that Py has
a component isomorphic with the graph c; is

P(p; ¢;; G) = X (=1)""(c;; €,) (em; GIp™. (3.5)

Proof: Let O(p; c;; G) be the probability that Py
has a subgraph isomorphic with ¢;, which is not a
component of Pg; then

P(p; ci; G) = (c;; Op" — Q(p;c3G).  (3.6)
To determine Q(p; c;; G), we use Eq. (3.4). Let Cbe a
particular subgraph of G isomorphic with ¢;, and
suppose that ¢, is not isomorphic with G (otherwise
the theorem is trivial). Number all the edges of G not
in C but adjacent to C from 1 to N. Let A4, be the
event that C is a subgraph of Py and that the rth
numbered edge of G is also black. P{4, U 4, U--- U
Ay} is then the probability that C is a subgraph of
Py but not a component, and so Q(p; ¢;; G) may be
obtained by summing this over all C isomorphic with
¢;. Suppose now that C7 is the subgraph of G, the
edge set of which is the union of the edge set of C
with the r numbered edges corresponding to the event
A?; then ,
P{A:} = pl(C’¢ ), (37)
where /(C?) is the number of edges in CI. Thus, the
summations in (3.4) may be replaced by summations

5 W. Feller, An Introduction to Probability Theory and Its Applica-
tions (John Wiley & Sons, Inc., New York, 1961) 2nd ed, Vol. I,
Chap. 4, p. 88.
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over the C7 . If then we sum over all possible subgraphs
C, isomorphic with ¢;, and collect together contri-
butions from the C7, which are isomorphic with ¢,,,
the contribution to J(p; ¢;; G), using (3.4), is

(¢:3 €)(eps QP m(=1)m 717 (3.8)

This follows since there are (c,; G) subgraphs of G

isomorphic with ¢,,, and each one contains (c;; ¢, )¥

subgraphs isomorphic with c¢; such that the edges of
¢,, ot in ¢ are adjacent to ¢;. Thus,

O(p; ci3 G) = 2 (€5 cp)(cp; GIpim(— 1),

m 3.9

where the prime indicates that the term m = i is to

be omitted. Equation (3.5) follows directly from

(3.6) and (3.9), since —(c;; G)p“ corresponds to the

term m = § which is missing from (3.9). This completes

the proof of Theorem I.

If now G is the connected graph c; and p = 1, then
the only subgraph of ¢;, which can be a component of
Py, is ¢; itself, since all the edges are black; thus

P(1;¢;5¢) =6y, (3.10)
and Eq. (3.3) follows by combining (3.5) and (3.10).

The proof of Eq. (3.2) proceeds along similar lines.
Suppose now that it is the vertices of G which are
colored black with probability p and colored white
with probability 1 — p. In any realization of the
probability distribution, let Ry be the section graph
of G corresponding to the black vertices.

Theorem I1: The probability P(p;c;; G) that Ry
has a component isomorphic with c; is
P(p; ¢;3 G) = 3 [c5 ¢l lems GIp"™(— 1) (3.11)
Proof: The proof is the same as for Theorem I, if,
for O(p; c;; G) read Q(p; c;; G), for subgraph read
section graph, for Pj read Ry, for edge read vertex,

for /; read v,, and for weak lattice constants read
strong lattice constants.

Again P(L; ¢5¢) = 8y, (3.12)

since when all the vertices are black ¢, is the only
possible component of Ry, and combining this with

CID S o el ens e] = 0,0 Gu13)

which is equivalent to (3.2).
Since {I';;} is the inverse of {A,;},

z Fz‘mAm;' = ZAimFmJ = 61‘.’5 ’

so that two further results equivalent to (3.1) and (3.2)
are

2 (e e) (=D m(e,; €)= 6y, (3.15)

z [Ci; cm](‘l)vi—vm[cm; cj] ¥ = 61’7’ E (316)

m

(3.14)

which are not obvious from a graphical point of view.
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4. CONVERSION MATRICES

Further relations between the lattice constants may
be obtained by using the conversion matrices of I.
The (m-n)th element a,,,(r) of the rth-order con-
version matrix was defined to be (g,;g,), where
m and n run over the graphs with r vertices in a
dictionary of all graphs with no multi-edges and loops.
It was also pointed out that similar matrices could be
defined for the dictionaries of connected and multiply
connected graphs. Here, we denote by A4,; the (i~/)th
element of the k& X k super matrix, the diagonal
blocks of which are the conversion matrices corre-
sponding to connected graphs, and the off diagonal
blocks of which are zero, that is

Ai; = (¢35 ¢)0y,4,- 4.1

For any graph G, the matrix {4,;} determines the set
of weak connected lattice constants of G in terms of
the strong connected lattice constants,

(¢:;G)= E Ayjles; Gl

This follows since every connected subgraph of G may
be associated with a section graph of G having the
same vertex set and which is also connected, and, if
v; = v;,(c;, ¢;) is the number of subgraphs isomorphic
with ¢; having the associated section graph c;.
If {B;;} is the inverse of {4,,}, we show that
Bii = (_1)lj—liAiJ' = (“l)l]_li(ci; c:i)(sui.v,w (43)
a result which is analogous to Eq. (3.8) in I, which
applies to the dictionary of a// graphs with no multi-

edges or loops. To prove Eq. (4.3), we notice that, from
(3.15),

(4.2)

z (Ci; cm)(_ l)lj_lm(cm; cj)avi,vj = 61’:’ s (4.4)

m
since if v; # v;, i # j and both sides are zero, but if
v, = v;, then the only nonzero terms on the left of
(3.15) have v,, = v;, and in this case, (c,;c)¥ =
(c.; ¢;). Equation (4.4) may therefore be written as

z (ci; cm)av,-,v,,,(_l)l]_lm(cm; cj)avm,v; = 61’5 ’ (45)

which is equivalent to (4.3).

We are now in a position to derive further results
which relate the weak lattice constants to the strong
full perimeter lattice constants and vice versa. From
(3.16),

Z Z Ayeler s e (=1 e, Cj]F = z Aii’ai'j , (4.6)
which using (4.2) becomes
z (Ci; cm)(—l)v‘_vm[cm; Cj]F = Aij’

which is the same as Eq. (24) of Ref. 4. From (3.15)
and (4.2),

Z Z Agless cal(=1) (e, cj)F =4, (4.8)

4.7
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so that
2 z z By Apilers enl(— 1) (s c)F = 2 Biibyj,
m & i i
4.9)
or, since {B,;} is the inverse of {4,;},
> e cnd(—= 1) (e, e )F = B;;.  (4.10)

m

5. CHOICE OF GRAPH DICTIONARY

In the previous sections, we chose for simplicity to
use the dictionary of all connected graphs with no
multi-edges or loops. This was by no means necessary
for the validity of the theory, and it is, in fact,
restrictive in two important ways.

First, if G is a physical lattice L (such as the
diamond lattice), then by no means all of the ¢,
occur as subgraphs of G. Numerical data illustrating
this point were given in I. In this case, it is convenient
to use the dictionary of connected graphs which are
subgraphs of L.

Second, if we wish to calculate ®(G) for a graph
with multi-edges or loops, it is necessary to include
connected graphs of this type in the dictionary. Such a
case might be a bond percolation problem® in which
it is desired to make the probability of two sites
being connected depend on the pair of sites chosen.
This may be achieved by having more than one bond
joining a given pair of sites.

Let us now examine the necessary restrictions on
the choice of a graph dictionary. It is to be observed
that (2.1) to (2.6) are generally valid for any list of
connected graphs. Having chosen such a list, G is
then restricted to being the union of any number of
components isomorphic with these graphs. For
example, supposing the list is

N

consisting of just two graphs, then G may be, for
example,

%J. W. Essam and M. F. Sykes, J. Math. Phys. 7, 1573 (1966),
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In this case, Eq. (2.5) reads

o0) - q>( A)m«»
AL

In calculating the weight functions f(c,) defined by
(2.6), it is desirable that Eqs. (3.1) and (3.2) are usable.
The validity of Theorem I, from which (3.1) follows,
depends on the graph dictionary containing all
connected subgraphs of G which themselves have
subgraphs isomorphic with ¢;. Thus, the restriction
imposed by the use of (3.1) is that the graph dictionary
must be such that, for any graph ¢; contained in the
dictionary, all the connected subgraphs of ¢; must also
be contained in the dictionary. Similarly, for (3.2) to
be valid, the presence of ¢; in the dictionary must
imply the presence of all its connected section graphs.
The above restriction is referred to as restriction A.
The usefulness of Eqs. (3.1) and (3.2) lies not only in
their simplicity but also in the fact that the graph
dictionary may be varied within the above limits
without any change in the weight functions f(c,).
For example, suppose the weight functions which are
necessary for the calculation of some ®(G) have been
computed and it is then required to calculate ®(G").
A large number of the weight functions will be
common to G and G', and it is therefore only
necessary to calculate the new ones introduced by G’
even though the graph dictionary may have been
changed.

A second restriction, which is not so easily formu-
lated, arises when we consider the usefulness of Eq.
(2.5). First of all, we note that, if G is connected, O(G)
appears on both sides of (2.5), and if we wish to use
only the right-hand side to calculate ®(G), nothing
will be gained unless f(G) = 0. In practice, we wish
to make use of (2.5) in calculating @ for an infinite
lattice L. In this case, the vertices of G are the sites of
L. Actually, ® does not exist for an infinite lattice, but
if it is a bulk property and G, (n=1-:-00) is a
member of a sequence of finite graphs which tend to
L as n tends to oo, then

$(L) = lim B(G,)/o(G,)
will normally exist. This is merely a definition of a
bulk property. The lattice constants p,(L) are calcu-
lated per site and are defined by

pz(L) = llm 77-i(G'n)/U(Gn)'
Thus, (2.5) becomes e

$(L) = i £e)pdL).

(5.2

5.3)

(5.4)

ESSAM

The restriction imposed on the useful choice of graph
dictionary is the requirement that a good approxi-
mation to ¢(L) may be obtained by calculating only
a finite number of weight functions.

One way of calculating ¢(L) is to truncate (5.4),
after a finite number of terms, and then increase this
number and observe the change to obtain an estimate
of the terms which have been omitted. This is the
so-called cluster expansion method. The success of
this method requires f(c;) to become small as i
increases, and this is usually valid in some region of
the physical parameters. It is possible that, by varying
the graph dictionary in such a way that the f(c,) are
changed, better approximations may be obtained.

A second method is that of using (5.4) to obtain
power series expansions in some parameter x. For
the method to work, contributions to the coefficient
of x», where n is finite, must come from a finite set of
the f’s. This is usually achieved by applying physical
reasoning in the choice of x. It is possible, although
no examples are known, that changing the graph
dictionary may also achieve the same effect by changing
the f’s. We now consider some examples which illus-
trate the above points.

6. PERCOLATION PROBLEMS

Suppose that, as in the proof of Theorem I, the
edges of a graph G are colored at random, black with
probability p and white with probability 1 — p. If now
we take ®(G) to be the mean number of components
in Pg (the mean number of black clusters using the
null cluster convention®), then

OG) = Ry(p; @ =3 P(p;¢3G).  (6.1)
The expression of Ky(p; G) as a polynomial in p has
been discussed in a previous paper® and follows directly

from (3.5). Here
Ko(P, G) = z (cm; G)ko(cm)ptms (62)

where

koem) = 2 (= 1) i(es; e

z

(6.3)

The dictionary used is that of all connected subgraphs
of G which automatically satisfy restriction A, so
that if, instead of calculating Ky(p; G), we wish to
calculate Ky(p; G'), G’ # G then, if c,, is a subgraph
common to G and G’, ky(c,,) will be the same in both
cases. Notice that if G has no multi-edges, then there
are no subgraphs c,, of G having multi-edges and the
weights of these graphs are then not needed. If G has
multi-edges, the weights of subgraphs having no
multi-edges will be the same as in the case when G has
no multi-edges. For an infinite physical lattice L,
the mean number of clusters is a bulk property, and
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we define the mean number per site by

ki(p; L) = lim Ky(p; G,)(G,)
in accordance with the previous section. Equation
(6.2) is in the best possible form for the derivation of
a power series expansion, since, to obtain the coeffi-
cient of p", it is merely necessary to sum over the
finite collection of subgraphs with n edges. The series
will converge for p less than a certain value p,, the
critical probability which lies in general between 0
and 1. If the function k(p; L) is required for values
of p greater than p,, the power series in p is of no use.
One would naively think that, if p is writtenas 1 — ¢
in (6.2) and the coefficients of ¢" are collected, a
series expansion for ko(p; L) could be obtained, which
would be valid for p close to unity. This would be the
case except for the fact that, to all orders in ¢, an infin-
ity of terms contributes to each coefficient. Such an ex-
pansion does, however, exist, but this will be discussed
in a subsequent paper. For the plane square lattice,
for example, ko(p; sq) = O(gY).

If now it is the vertices of G which are colored at
random, as in the proof of Theorem 11, a polynomial
expression for the mean number of black clusters
(components of Rg), K(p; G) may be obtained from
(3.11),

K(p; G) = 3 P(p; ¢;5 G) = X [en; GIK(c,)p™,  (6.5)
K(c,) = 2 (=1 e el (6.6)

In this case, graphs G with multi-edges are not
normally considered, since the replacement of an
edge by a multi-edge has no effect on K(p; G). Again,
(6.5) is in an ideal form for obtaining power series
expansions in the variable p, the coefficient of p”
coming from all connected sections graphs of G with
n vertices. The properties of both k(c,,) and K(c,,)
have been discussed in a previous paper.®

(6.4)

where

7. DILUTE ISING AND HEISENBERG
FERROMAGNETS

The problem of dilute Ising and Heisenberg
ferromagnets has been considered by Rushbrooke!;
some of the results therein are rederived. Suppose that
the vertices of a finite linear graph G, with no multi-
edges or loops, are occupied at random by either
magnetic or nonmagnetic elements, the probability
of occurrence of a magnetic element being p. Suppose
also that there is a spin-spin interaction (Heisenberg
or Ising) between two magnetic elements if and only
if the vertices which they occupy are connected by an
edge. Our theory as formulated only applies when the
interaction energy is independent of the edge con-
necting the magnetic elements, but may easily be
generalized. The function ®(G) in this problem is
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taken as —fF(p, T, H; G), where f = 1/kpT and F
is the free energy which will be a function of the
concentration of magnetic elements, the temperature
and the magnetic field. It is clear that ®(G) so defined
has the extensive property (2.1) independent of
whether the interaction is of the Heisenberg or the
Ising type. We choose to take the graph dictionary
of all connected graphs so that, by choosing £ in
Sec. 2 to be large enough, any finite graph G is
included in the theory. To obtain the free energy of the
dilute magnet, it is necessary (see Brout”) to calculate
the free energy corresponding to a given allocation
of the magnetic elements to the vertices of G and then
to average over all such allocations, weighting with
their respective probabilities. If the magnetic elements
are identified with the black vertices in the proof of
Theorem II, it follows that

F(p, T, H; G) = 2 P(p; ¢; OF(1, T, H; c), (7.1)

since in the allocation corresponding to the section
graph Ry, the free energy is the sum of the free
energies calculated for each component of Ry with
p = 1. The latter simply results, since there are no
edges of G connecting magnetic elements which are
in different components of Rp. Using (3.11) and
defining &(G) by
0(G) = —BF(, T, H; G),
Eq. (7.1) becomes
~BF(p, T, H; G) = ®(G) = X [¢,,; GIW(c.)p™
" (7.3)

(7.49)

(7.2)

where

W(en) = 3 (=1 e e, 17 O(cy).

1

Now consider the situation which arises in the case
of an infinite crystal lattice L. The vertices of G are
now the sites of L and the edges of G represent pairs
of sites which are separated by the nearest-neighbor
distance. It is necessary to restrict the argument to
nearest neighbors so that the interaction energy,
being a function of the distance between sites, is the
same for all edges of G. If second- and higher-
neighbor interactions are to be included, the edges of
G must be labeled accordingly, and a more general
formulation of the theory used which allows the
interaction energy to depend on the type of edge. The
property of L which remains finite is the free energy
per lattice site, and Eq. (7.3) is in the ideal form for
obtaining a power series expansion in terms of p,
contributions to the coefficient of p" coming from all
connected section graphs of L with n vertices. The
coefficients are, of course, functions of T and H, and
so the radius of convergence may depend on these
parameters. Similar expansions for the zero-field

7 R. Brout, Phys. Rev. 115, 824 (1959).
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susceptibility have been used by a number of authors®-10
to determine the radius of convergence as a function
of temperature. For high enough temperatures, the
series converges over the whole physical range of p;
this is why a high-temperature expansion for p =
may be obtained by regrouping the terms of (7.3). The
method fails to yield a low-temperature expansion for
any value of p for the same reason that a high-density
expansion for the mean number could not be obtained
in the previous section.

8. THE HARD SQUARE LATTICE GAS

For a recent discussion of the hard square lattice
gas, see Ref. 11. Suppose that the vertices of a graph
G are occupied by molecules which interact in such a
way that vertices connected by an edge cannot be
simultaneously occupied and also that there must be
no multioccupation of a vertex. If there are no other
restrictions, the grand partition function is

E=1+3&0G)7, (8.1)
1=1

JOHN Ww.
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and we have used strong lattice constants. We now
attempt to derive a power series expansion for I'(z, G)
in terms of the variable z. The dictionary of all
connected graphs which are section graphs of the
square lattice is used, and the expansion developed
through z%. It turns out, although it is not obvious
from our formulation, that a section graph with »n
vertices makes no contribution to powers of z less than
the nth. This, in fact, is the point we are making in this
section. If it were not so, the method would break
down. The first task is to calculate the I'’s which are

I'(z, ) = In(1 + 2), F(z, / ) = In (1 + 22),
F<z, A) =In(l + 3z + 2%,

F(Z’N>=1n(1+4z+322),

where z is the activity and &,(G) is the number of ways (8.5)
of placing / molecules on the graph in accordance with
the above restrictions. In this problem,

PG =TI'(z,G)=InE, 82 p z, =1In(l + 4z + 322 + 29,
which clearly has the extensive property (2.1). Using
(2.5), we may write

k

F(Z, G) =i§1f(z, Cz’)[ci; G], (83) P z, _ ln (1 + 4z + 222).

where
k
f(Z, Ci) = gF(Z, cj)(_l)vi—vj[c:i; ci]F9 (84) Using (84), thef’s are

f(z, e)=1T(z,®) =z —1z2+ 323 — }z¢ + O(Z5),
flz / ) = P(z, / ) — 2T(z, @) = —z% + 228 — 3}z4 + O(25),
f A) = ( A) - ZF( ) + F(Z: .) =23 — 424 + 0(25)’
N ) N ) /\) sl ) rran
flz *) ( K) ( A) + 3F(z, / ) — I'(z, @) = —z* + O(z%),
ALY L) Ao ) e

8 G. S. Rushbrooke and D. J. Morgan, Mol. Phys. 4, 1 (1961).
? R. J. Elliot and B. R. Heap, Proc. Roy. Soc. (London) A26S,
264 (1962).

R Heap, Proc. Phys. Soc. (London) 82, 252 (1963).
un D. S. Gaunt and M. E. Fisher, J. Chem. Phys. 43, 2840 (1965).
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For a lattice L, define
y(z, L) = limI'(z, G,)/v(G,),

n—> o

8.7

so that, using the strong lattice constants per site for
the plane square lattice, we obtain from (8.3) the
expansion for the hard square lattice gas in terms of
the activity,

2z, 5q) = z — 2322 + 10325 — 52}z* + O(z5). (8.8)

Here, we are not interested in deriving higher terms
which are available,!! but only wish to emphasize the
point made in Sec. 5 that, by making a physical choice
of expansion variable, only a finite number of terms
contributes to the expansion coefficients. The reason
for the cancellation in this case may be seen by using
the method of Rushbrooke and Scoins,? but the
general considerations governing a choice of variable
are not obvious.

9. SUMMARY AND CONCLUSION

A graphical interpretation has been given to the
coefficients which appear in the weight functions
associated with the expansion of an extensive property
®(G) in terms of connected lattice constants. The
result may be summarized by

Y(G) = fn(G), 0.1

where
f=To (9.2)

and 4 denotes the transpose of a matrix 4. The
column matrices #(G), ®, and f have ith elements
7{G), ®(c,), and f(c,), respectively. Subject to quite
broad restrictions, given in Sec. 5, the i—jth element of
the square matrix I' is given by (3.1), when weak
lattice constants are being used, and by (3.2), when

12 G, S. Rushbrooke and H. J. Scoins, Proc. Roy. Soc. (London)
A230, 74 (1955).
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strong lattice constants are being used, and apart
from a possible factor of —1, I';; is the full perimeter
lattice constant (weak or strong) of ¢; in ¢;.

I is the inverse of a matrix A, the i-j the element of
which is (¢;; ¢;) in the weak case and [c;; ¢;] in the
strong case, thus

TWAW = TSAS = |, (9.3)
APTW — ASTS = |, (9.4)

In Sec. 4, we defined the conversion matrix 4, and
Eq. (4.2) implies that

AW = AAS (9.5)

and relates weak lattice constants to strong lattice
constants. The inverse matrix B of 4 is given by (4.3)

AS = BAV, (9.6)

and using Eqgs. (9.5) and (9.6) in conjunction with
(9.3) and (9.4), we obtain Eqgs. (4.7) and (4.10), namely,
AVTS = 4, .7
ASTW = B, 9.8)
An independent proof of (9.7) has been given by
Rushbrooke.*

The derivation of power series expansions in the
case when G is an infinite lattice has been discussed
and illustrated by percolation problems, dilute ferro-
magnets, and lattice gases.

Theorems 1 and II, which were used in deriving
(9.3) and (9.4), are especially useful in connection with
the cluster size distribution for percolation problems.
This application will be discussed in a subsequent
paper.
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In a theory of local observables as proposed by Haag and Araki, the assumptions which make possible
a collision theory also guarantee the CTP invariance of the S-matrix.

1. INTRODUCTION

HE purpose of this paper is to prove the CTP

invariance of the S-matrix in a theory of the type
proposed by Haag and Araki.'~5 Such a theory is
defined by giving a Hilbert space J, a continuous
unitary representation {@, A} — U(a, A) of the Poincaré
group ! acting in X and, for every domain B in the
real Minkowski space (R*), a von Neumann algebra
R(B) of bounded operators acting in X with the
following properties:

(1) If B, < B, then R(B,) < R(By,);

@ 1f B = UB, then R(B) = { 0 R(B,,)}";

(3) If (x; — x;)® < O for every x; € B, and x; € B;,
then R(B,) and R(B,) commute [i.e., R(B,) <
R(BY'];

4) Ua, M)R(B)U(a, Ay = R(a + AB);

(5) U(a, 1) = exp i(a, P); the spectrum of P (the
energy-momentum operator) is in V+;

(6) There is a vector Q (vacuum) in J, unique up to
a scalar factor, such that U(a, A)Q = Q;

(7 Q is a cyclic vector for the union of all R(B)
and, as a consequence of the Reeh-Schlieder
theorem, a cyclic vector for each R(B).

The above assumptions are appropriate to the case
when the theory contains no spin —4(2n 4 1) states.
It may however contain different charge superselection
sectors; in this case R(B) contains not only local
observables, but also operators (similar to charged
fields) carrying charge. The case when there are states
with spin (2n + 1) can be treated by a slight modifi-
cation of the assumptions to which we return later. 8

We call HA-field an operator-valued function
x — A(x) of the form A(x) = U(x, DAQ)U(x, 1),
where A(0) € R(B) for some bounded domain B, and

* On leave from Centre National de la Recherche Scientifique,
France.

t R. Haag, Nuovo Cimento Suppl. 14, 131 (1959).

2 H. Araki, “Einfuehrung in die Axiomatische Quantenfeld-
theorie,” Lecture Notes, Zurich (1961-62).

3 H. Araki, Progr. Theoret. Phys. (Kyoto) 32, 844 (1964).

4 H. J. Borchers, Commun. Math. Phys. 1, 57 (1965).

5 H. J. Borchers, Commun. Math. Phys. 1, 281 (1965).

(Q, 4(0)Q) = 0. Note that || A(x)]| = || A(0)| and that
x — A(x) is weakly continuous. We say that 4 is C*
if A(0) = { ¢(x)4'(x) dx, A’(0) € R(B'), B’ bounded,
@ € D. In this case 4(0) € R(supp ¢ + B’).

Let Ay, - -+, 4, be (n + 1) C* HA-fields. The per-
muted Wightman functions of these fields,

(Q’ Airl)(x'rro)Aﬂl(xﬂ‘l) tee Arn(xrn)Q)’

are bounded C* functions of the difference variables
Xy — Xg,°**, X, — X,_1- Generalized retarded func-
tions (grf) can be defined for these fields by the
formulas which define such functions in an LSZ
theory.?%-8 Note that these formulas contain expres-
sions of the form 6(x¢ — x9). We therefore assume in
the following that a fixed Lorentz frame has been
chosen once and for all for the purpose of writing
down these formulas. Multiplication by 6 functions is
here legitimate and leads to grf which are, in x-space,
piecewise C®. In momentum space, the grf are
boundary values (in the sense of tempered distributions)
of the same analytic function H(k) (k = p + ig). The
domain of analyticity of H(k) is the same as in an
LSZ theory.?®7® However, the supports of the grf
in x-space are not exactly those of an LSZ theory but
are contained in cones obtained by translation from
those of an LSZ theory.® It follows that H(k) is not
bounded by polynomials at infinity but grows
exponentially in imaginary directions. This is seen
in more detail in the next section.

2. A PROPERTY OF THE p-SPACE
ANALYTIC FUNCTION

Although this section is reasonably self-contained,
it is the logical sequel of Ref. 10, and uses the same
techniques. The notations are those of Ref. 9.

8 O. Steinmann, Helv. Phys. Acta 33, 257 (1960); 33, 347
(1960).

7 D. Ruelle, Nuovo Cimento 19, 356 (1961).

8 H. Araki and N. Burgoyne, Nuovo Cimento 8, 342 (1960).

® H. Epstein, in Brandeis University Summer Institute of Theoretical
Physics, Vol. 1, Axiomatic Field Theory, M. Chrétien and S. Deser,
Eds., (Gordon and Breach Science Publishers, Inc., New York,
1967).

103, Bros, H. Epstein, and V. Glaser (to be published).
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A. Retarded and Advanced Functions

We start by considering the retarded and advanced
functions
50(") = z 0(352”

TE€Yn+1
70=0

X (‘(29 [Arrn(xﬂn)’ [ T [Arl(xwl)’ AO(XO)] T ]]Q),

FO(x) = 2 B(Xg - x?rl) e e(xg(n—l) - xgn)
pries

X (Q’ [[ o [AO(XO)’ Arrl(x:rl)]’ s ']’ An"n(xfrn)]Q)

(7 runs over the permutations of 0, 1, 2, - - - n which

do not move 0).
It can be shown? that there is a 4-vector a =

(@, 0,0, 0), a > 0 such that
supp do(x) < {x:1x; — xo€ P+ — o, 1 <j < n},
supp Fo(x) © {x:xg — x;€ P+ — a, 1 < j < n}.

~ X3-) " 001 — x0)

The Laplace transforms of &, and 7, are given by

ay(k) = f exp l:iélkj(x, - xo)] Gy(x) d'x, - - d'x,

= exp l:—iélkjot] jexp [i,élkﬁj}
X dyx) d*¢, - -+ d%,, (1)

where & = x; —xo+ o, 1 <j < n); k; = p; + ig;,
g;€VTt;

ro(k) = exp l:iék,-a] fexp [—iglk,-f}]
X Fo(x) d*&] - - - d'E,, ()

where &, =xy— x;,+ a; k;=p;+ig;, q;€V~;
1 £j < n These functions are respectively holo-
morphic in G5 and —B%, where

Ch=(k=p+ig:qeVt 1<j<n}

When g — 0, a(p + ig) {resp ro( p + ig)] tends, in the
sense of &', to the Fourier transform ay(p) [resp ry(p)]
of d, (resp 7). The tempered distributions a, and r,
coincide in the real region defined by

2
[p: (zp,-) < 0 for every subset J of {1,2,- -, n}],
iey
in particular at Jost points. It therefore follows from
the theorem of Glaser and Streater!®—12 that g,(k) and
ro(k) have a common analytic continuation ([the
restriction of H(k)] in the “extended tube”
U AB% =g,
AeL(C)
For every nonzero complex number 4 we denote []

11 R, F. Streater; J. Math. Phys. 3, 256 (1962).
12 R. Jost, The General Theory of Quantized Fields (American
Mathematical Society, Providence, Rhode Island, 1965).
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the complex Lorentz transformation defined by

1 n 1 1 |
“(A+=} ={2==}) 0 0O
2(4+3) 563

(4] = %(A—i) %(/Hi) 00

0 0 1 0
L 0 0 0 14
(we are still in our original privileged Lorentz frame).
H([A]k) defines a function of A and & holomorphic in
[C — {0}] x B, in particular in [C — {0}] x G,
for which we find estimates.

(1) Estimates for ay(k) in G5 and ry(k) in — G5
Using the formulas (1) and (2), it is easy!® to find
estimates for ay(k) and ry(k). Defining

Co = sup {|7s()], |Go()},
we find, for k; = p; + ig;:
exp (—iocz k,.)
=1

xTT | _.exp(—q55 + q;- &) d*¢;

i=1 J &€V

€Xp (—iaikj)
j=1

x 1T [ "exp 1—(a5 — laDéSpimedy aes

exp (—iaZkf) 11 (45 — la;D
i=1 i=1

hereg,e VT (1 <j < n).
A similar estimate holds for ry(k) when ¢; € V=, so
that:

[H(k)| < Cexp

lag(k)l < Co

<G

= 87C,

Sag,| TL0a — D )
fork; = p; + ig;, Igfl > g,/ (1 < j < n).(C = 8rCy).

(2) Use of Certain Jost Points
We introduce the new coordinates

n
OLqJ
=1

w= KK, o=k~ K,
and consider (as in Ref. 10) a closed ball X in the real

momentum space, (R*) such that, for every p =
(p1>* -, py) € Z, the following inequality is satisfied:
min {ul’ Uy, * ° ',un, —Uy, —Ug, """, —Un} Z u > 0
(u depending only on X). Then, for every p € 2,
[Alpe®S for ImA >0,
[Al]pe —B% for ImA <O,
[Alp is a Jost point for Im A =0, 13 0.
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The inequality (3) yields, for every pe X, Im 4 # 0,

Im Au; 4 v, Imi”

2
% |:1 + 14| :l
u |[ImA|
On the other hand, every Jost point being a point of
analyticity of H(k) (by the edge-of-the-wedge theorem),
we know that H([A]p) is also analytic at real values of

A#0.If Im p=0, p 0, we apply the maximum
principle to the function (of 4)

(2 — 2p)*™(A — $p)*"H([A]p)
in the square
{A:IRe 2 — pl < % pl, [Im 4] < §1pl}
to obtain an upper bound for H([p]p). Finally, we
find that there exist constants 4A(X) > 0, B(Z) > 0
such that, forall A5 O and all p e &

[H{AP) < A(Z) exp {B@(m + Ilﬂ)] @

The set [i]Z is compact and contained in G%. The
function F(4, k) = H([A]k) is analytic in a neighbor-
hood of the set

E = {i#0,k:[Ak € G5, k e 6%}
U{i,k:2#0, keli]Z}.

This set is invariant under the transformation:
(4, k) — (pA, k) for any p > 0. Using the inequalities
(3) and (4) it is easy to show that, for every compact
K < E, there exist constants A(K) >0, B(K) >0
such that, for all (4, k) e Kand p > 0,

(HAD) < C{exp %ai]

J=

F(ph, k) < A(K) exp [B(K) (p + i)]

It is possible to show (see Appendix I) that the
envelope of holomorphy of any neighborhood of E
contains the topological product

{2, k:d 5 0, k € 8%},

and that, for every compact K contained in this
topological product, there exists a compact K’ < E,
such that K is contained in the envelope of holomorphy
of every neighborhood of K’; hence, for every function
G(4, k) holomorphic in {4, k: A 5 0, k € B%},

max |G(4, k)| € max |G(4, k)|.

(L.b)eK (A,k)eK’
Applying this to G(4, k) = F(pA, k), we find that for
(Ak)eKand p >0

IF(p2, ) < ACK") exp [B(K')(p + i)}

HENRI EPSTEIN

In particular, for every compact K; < B, the set
{4, k:|A| =1,k e K,} is compact. Therefore there
exist constants A(K;) > 0, B(K;) > 0 (by abuse of
notation) such that, for every k € K; and 4 £ 0, one

has
IF(3, K| < A(K,) exp [B(Kl)(m + —1—)] ©

1]

(3) Estimates for F(A, k) in {, k: A # 0, k € B%}

The estimate provided by (5) is insufficient for our
purposes and is improved by the use of the Phrag-
mén-Lindel6f theorem.

Letk = {ky, k., k; = p; + iq;, u; = k2 + Kk,
v; = k? — k},(g)* + (¢)? = r?(1 < j < n). The con-
dition for k to be in B is: g? > |q,/ (1 < j < n), i.e,

Imu;Imv,>r}, Imu; >0, Imo,>0.

Denote:

u = min {Imu;, Imv,},
1<j<n

M =1 max {Imu,;,Imuv,},
U 1<j<n

m=1 max {|[Re u,, |[Rev,|} = v ,
u

U1=<j<n

k=1—max {r{Imu,Imv,)™}; 0<k< 1l

1<j<n
Let A = pe'® 5 0; denote k; = p; + ig; = [A]k;. The
condition for [A]k to be in £B% is
. 45> 97 = (@) — lq;I* > 0,
ie,
(cos 0 Im u; + sin 6 Re u;,)
X (cos 6 Im v, — sin 6 Re v;) — r; > 0.
Noting that [Rew;] < M'Imu,;, [Rev;| < M'Imv,,
we see that, if [cos 8] — M’ |sin §] > 0, we have
(4}, q;) > [lcos 6] — M’ |sin 0]]* Im u; Im v, — r?
> Imu,; Imo,fe — (1 + 2M") |sin 6]].

Let us choose

[sin 8] = yx/(1 + 2M’) with 0<y <1
(then [tan 6] < [(1 + 2M')? — 1]-% < M’'-Y). We find

q;,9) 2«1 —y)Imu;Imv,,

(g3 — lagh™ .
2 !
< lq;
k(1 — y)Imu,; Im v,
< =97 (2 ) icos
Imv;, pImuy;

p+(/p) _ yx U]
Imo;Imu; (1 + 2M")

< 1 =) p + 1/p)(2/u). (©6)
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On the other hand,

exp lagj| = exp a |q7|
< exp talp + (1/p)lIMu + [sin 6] UL (7)

Fory € yo =4, Isin 0] < sin 0 = «/(2 + 4M') < 4,
we have, using (3), (6), and (7)

dlN

IF, k)| < c[ (m +13
X exp %na(])‘t[ + 7 i) [Mu + sin 8,U] (8)

(note that Usin 6, = [«/(2 + 4M")IM'u < u).
To obtain an estimate for |sin ] > sin 0,, we first
rewrite (8) in the form:

IF(, k)| < c[ (Ml + Ml)] exp na (IZI + m ')
[2Mu

(1+2M)+U]sm60

or

IF(, k)] < c[ (MI + W):l exp %na(!il + W)
« 2Mu + (M + 1 sinf, (9)

(valid for 1 = pe, |sin 0] < sin 0,,).
We now apply the following form of the Phragmén—
Lindeldf theorem.

Lemma 1: Let f be a function of one complex
variable, holomorphic in a neighborhood of the set D:
={Z=pe""’,p>0,egg(pgﬂ'~—90},

where 0 < 8, < }w. Assume that there are constants
Ay > 0,B,> 0,4 >0, and B > 0, such that
(1) for A = pe'® or A = —pe~%, p > 0,

F(D] < Agexp Bo[lA] + (1/1AD],
(2) forieD
If(W] < 4 exp BllA] + (1/1AD]-
Then, for all Ae D,
() < Agexp (Byfsin ) Im [4 — (1fA)].

Proof: (Given here for completeness; it is a para-
phrase of the well-known proof of the Phragmén-
Lindelf theorem and can be omitted.) Denote 4 the
function,

h(2) = {exp i(Byfsin 6)[2 — (1/DL} f (D).
For A = pet?, p > 0,0 < ¢ < w, we have
(A < {exp (—Byfsin by) sin p[p + (1/p)1} | (D,
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so that

|h(A)] < A, for A= pe® or —pe®, (p>0),

Ih(3)] < A exp B(M{ + |—/11t) for ieD.

The function 4, defined by
h{2)

= exp [_E(aﬁ)(x—eo)i(ﬂ-—zao) — e(i/z)hr—eo)f(rr—%o)]k(l)’

. (e > 0),
satisfies, for 1 € D,

|h(A) < A exp{ (MI + W)
— esin 36,(J4° + M%“’)}

while, for 4 = pe*® or —pet®, (p > 0),
h (D] < 4.
Here o = (7 — 0,)/(w — 26,) > 1. By applying the
maximum principle to 4, in sets of the form
{Ad=pe\ L' < p< L6, < 9 < 7w — B}

for all sufficiently large L > 0, we find that |# (2)] < 4,
for all 4 € D. Letting € tend to zero yields the same
inequality for {A(2)|. Hence,

1
A A —_ A -~
IF )] < Ao | exp ‘sme( x)[
B 1
=4 CIm (12
0 ¢XP sin 8, m( 2)

in D.
Applying this result to the function of i

F@, B)[[2i + 2 — (/D))

and using the inequalities

<

I’“'*tz w‘

2i+l—ﬂ$’2+i}i!+—1-

in the upper half-plane, we obtain
4n
IF(3, )l < c[ (2 I+ l)]

X exp %na(lii + 11) [2Mu + (ﬂ + 1) J

(10

this inequality is valid for: |sin 6] > sin 8,. But since
the right-hand side also majorizes the right-hand side
of (9), it is valid for all 4 5 0. For each fixed 1 5 0,
the inequality (10) shows that F(4, p + ig) tends to a
distribution in p when ¢ tends to 0 in any cone where
M |« is bounded. To obtain estimates on this boundary
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value, we restrict our attention to points k of the form
k=p+ie, ¢=u000), u>0 1<j<n
Let ¢ € D(R*) with support in {p:p;l <R, 0L

j<n} (recall that po+ p1+** + P, =0;

Ipii* = 317%F)-

Denote
Glds us ) = f H{A(p + i9}g(p) dp

(dp = d*p, - - - d*p,). This is a C* function of 4 and
u (A # 0, u> 0) with

(0™(0u™G(A; u; @) = G(4; u; A™p),
where A is the differential operator,
—!Z =5 (p)

1==x«s0 that by (10),

Ag(p) =

We can take M =

scl+m+ w)]dn
x [exp %na(lll + M)(z" + SR)] f 4™ p(p)| dp.

By standard procedures,®® one finds that (6™/0u™) X
G(%;u; @) is continuous at v =0, and that, for

0<uxu,

ou™

2 65 us w)' < CQ + Al + 11D

x [exp %na(lll + i)(zuo + 5R)]

2]
4n+1

x 3 it f | A g(p)] dp 11

for any wu, > 0. In particular, taking u, = 4R, we
obtain

1G(4; 0; @)l < T l2 + 4] + (/1ap)=
x exp 3naR[|A] + (1/AD)), (12)

where I'; is a constant depending on ¢. The conver-
gence of G(4; u; @) to G(4; 0; ) is uniform when 1
remains in a compact of C — {0}, as shown by (11),
so that G(4; 0; ¢) is holomorphic in A for a fixed ¢.
Moreover, (12) and the use of Cauchy’s formula
prove that G(4;0; ¢) defines a holomorphic vector-
valued function of A with values in the space of
distributions of order < 4n + 1. Thus, there is a
distribution ay(4; p) (distribution in p depending

18 M. Zerner, “‘Les fonctions holomorphes a valeurs vectorielles
et leurs valeurs aux bords,” Lecture Notes, Orsay (1961).
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holomorphically on 4 s 0) such that, for real 4 > 0,
ay(%; p) = al[Alp), al—2;p) = rl(—Alp),
so that we write, by definition,
rfd; p) = a(—A4; —p), AeC —
Using (3), we obtain, for real 4 5 0
IGA; 0; )l < T 12 + |4 + (1IADF". (13)

[This simply reflects the temperedness of a4(p) and
ro(p).] To exploit these inequalities, we define

K32 — (D] ¢} = 3HG(A; 05 9)
+ G[—(1/4); 0; 91},
K34 — (1/D]; ¢} = 34 + QD]
[G(4; 0; ¢) — G(—1/4; 0; 9)].
The functions K({;¢) and K({;¢) are entire
functions of the variable {. To see this, consider the
holomorphic function of two variables z,, z,, defined,
for z; + z, # 0 and z; — z; # 0, by
G(Zl + 295 0 ¢) G(Zl - Z3; 0 ‘P)

Because it is antnsymmetrlc in z,, it can be written
2,8(21, 2). Setting z; = }A — (1/4)], zz = 4[4 + (1/2)]
we obtain

HA + (YDA — (/D] A — A/HP + 1}.

{0}.

~To obtain bounds for these functions one can, for

example, notice that

(9/02) G(2; 0; ¢) = G(4; 0; — M),

0 -5 ;a
M ¢<p)—;(p,ao p,ap)q?(p)

= 2 Wi

1
730
P q”)
A
=f G(p; 0; —M" ) dp,
—1/4

the integral being taken on any contour avoiding 0.
There always exists an arc (4, —1/2) of the circle pass-
ing through 4, —1/4, +i, 4, —1/4, which is contained
in {u:(pl = 1HADAA — {ul) > 0}. We choose this
arc as our contour of integration; its length is always
< 7|4 + (1/A)]; every point x on the contour is
such that |u| + (1/|u]) <2[|A] + (1/|AD]. Finally,
using (12), we find

KDl < 37T 30, (4 1L + 6)*" exp 12naR(|L] + 1).
(14)

Hence

G(2;0; v) — G(—
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It is even simpler to obtain a bound for K,({)
|K(DI < T, 218 + 4)*" exp 6naR({] + 1), (15)
For real 4, |4 + (1/4)] > 1 so that
KD KDl < T 2 18] + 4%, {real. (16)

(For real {, A and 1/A are necessarily real.) These
inequalities show that for real {, K,({) and K,({) are
Fourier transforms of distributions with support in
{7:}7] < 12naR}. In other words

f K.(&; 9)p(e) dE = f K,(&; )p(®) dE = 0

for every y € 8(R) such that the Fourier transform
of  has its support in {7:|7{ > 12naR}. This can be
rewritten

o= [ (=) + 5)

X {ﬁ[ao([llp) + ro([— ﬂp)]ﬂp) dp},
o= (=315

| f %[ao([llp) - ro([— ﬂ p)]qo(p) dp}.

Note that these integrals are known to converge
because of the temperedness of g, and r,.

B. Other Generalized Retarded Functions;
Time-Ordered Function

We recall that the grf are labeled as follows”:
consider the subspace X, of R»+1 defined by

n
s = (s05 S1,°° 7 Sn):vzosj = O}a
j=

X, ., is divided into cells by the hyperplanes of the
form {s:s; = 0}, 5, denoting ]_EZIS,. for every proper
nonempty subset J of {0, 1, - - -, n}. Each cell S the sub-
set of X,,; defined by attributing a certain definite
sign to each partial sum s;. For example,

So=lseS ;>0 it 0¢Ls; <0 if 061;._

To each cell S is associated a grf denoted r5; this is
a tempered distribution in momentum space, the
boundary value of a function r*(p + ig) holomorphic
in the tube G°.

S ={k=p+ig:q;eV*" if s;>0 in S}

Obviously B = —BS Actually all functions
r*(p + iq) are branches of H(p + ig),i.e.,r(p + ig) =
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H(p + ig) | °. For more details we refer the reader
to Refs. 2, 6, 7, 9, and 14.

Considerations analogous to those of the preceding
subsection lead to the following result.

There exists, for each cell S, a distribution r5(4; p)
on R** depending holomorphically on 1€ C — {0}
with the following properties:

(1) ¥; p) = r 5(—14; —p);

(2) r(4; p) = r([A]p) for real A > 0; by (1) this
implies r5(1; p) = rS([4]p) for real 1 < 0;

(3) there exist constants 4 > 0, B > 0, such that,
if ¢ € D(R*") with support in

{p:lpl <R O0Lj<n},
one has

[ oo dp| <A+ ﬁ)

x [exp BR(|/1| + ﬁl)}N(q)), a7

@ — N(p) being a certain norm in D(R*");
(4) if p € S(R) is a function of a real variable whose
Fourier transform vanishes in {r; |7| < 4 BR}, then

Jo 3=+ 3)
3 | S| + ([ =3]p) e o] = <();8)
)

< {[3[Fwm - (1= 2e) Jewrap) = o
2 L 4

19)

for all @ e D(R*") with support in {p:lp;| <R,
0<j<n} We omit the detailed proof of this
statement which uses no other ideas than those of A.
We need the analog of (18) and (19) for the “7T-
product” or “time-ordered function.” This distribution
7(p) in momentum space is the Fourier transform of

%(x) = zn+1 6(x?ro - Xgl) e 6(x2(n—1) - x;)'n)

wEY
X [Qa A7r0(x1r0) e A:m(an)Q]'

‘The “truncated time-ordered function” =7 is the

Fourier transform of #7(x), obtained by replacing,
in the above formulas, all Wightman functions by the
corresponding truncated Wightman functions.? It is
well known® that the grf defined from truncated
Wightman functions coincide with those defined from
the ordinary vev. Using this fact and Ruelle’s method,?

14 J. Bros, High-Energy Physics and Elementary Particles (IAEA,
Vienna, 1965).
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assuming a strictly positive minimum mass u for all
states orthogonal to the vacuum, it is easy to see that
r5(p) coincides with 77(p) in the domain defined by

{p:p;¢V " or p} < u®for all I such that s; > 0in S},

(PI = ZP:‘) ;

jel

which contains a neighborhood of

{p:p° S}
The family of these open sets covers the whole real
momentum space; to summarize: each point p in real
momentum space is the center of a real open ball in
which 77 coincides with at least one rS. Obviously, in a
neighborhood of —p, 77 coincides with r—5. Let ¢ be
a function in D(R*") with support in {p:|p;| < R,

0 < j £ n}. Using a partition of the unit we deduce
from (18) and (19):

i ”dsz(a - —m(l + )

x { j MAZ(Alp) + TT([— ﬂ p) #(p) dp} =0,

®di T1 1 0
50 -3)]
x { f g[v'f({z]p) - TT([- ﬂp)] opdp =0,

@y

for all  in S(R) whose Fourier transform vanishes in
{r:|7| < 4BR}. 7 differs from 77 by sums of (tensor)
products of delta-functions and truncated time-
ordered functions of fewer variables; thus (20) and (21)
continue to hold if 77 is replaced by = in these
formulas. (The constant B is a nondecreasing function
of n.)

3. ADDITIONAL ASSUMPTIONS AND SOME
CONSEQUENCES (SPINLESS CASE)
A. First additional assumption

We assume that the Hilbert space JC decomposes
into a direct sum of (charge) superselection sectors,

% = {@Je,.},
jedd

where G is an Abelian group with additive notation.
Each sector XK, is itself assumed to be a direct sum,

No
Jeo = CQ + (—BJCOIC@JGS,

k=1

Ny
Jﬁ,- = @’}eik®'}e§ (j==0),

k=1

HENRI EPSTEIN

where the subspaces X, J; are all invariant under
U(a, A); PAP, | 3¢ > M} > 0; N;is at most countably
infinite; the restriction of the representation {a, A} —
U(a, A) to the subspace JC,, is irreducible and unitarily
equivalent to [m,,, 0], and

ma‘1<m52<"'<m,-,.<“'<Mjf0ra11j.

B. Second additional assumption
For each j € G and each domain B < R4, let

R/(B) = {4 € R(B), AQ e X,;}.
We assume that

U R(B)Qisdensein ¥, and
B bounded

[R{(B)]* = R_(B).

It then follows, by the Reeh-Schlieder theorem, that
Ri(B)Q = X, for every domain B in R% A partial
justification of these assumptions can be found in the
work of Borchers,® where it is also shown that they
imply my, = m_g, for all j and k.

Let E;; be the projector onto Jy;, Ef the projector
onto ¥, Eg the projector onto CQ. Define

(K, , AQ) = O for all r < k}.

Let A(0) € R(B), A(x) = U(x, 1)4(0)U(x, 1)~*. Then

Eil H (mw + m?r)(_m?k -+ m?,)‘lA(X)Q
r<k
E A0Q if I=k,
o if 1<k

Therefore E, R;(B)l=1X;. We denote R%(B),
R(B), and R;;(B) as the subsets of R(B), R(B), and
R, (B), respectively, consisting of elements 4 such that
there exists a C* function ¢ with compact support K
on the Poincaré group and an operator A4, € R(B,),
R(B,), or R;(B,) (respectively), such that

4= f o(a, A)U(a, A4, U(a, Ay da dA,
and K-B, < B.

(Here da dA stands for the invariant measure on
the Poincaré group; the integral is meant in the
weak sense.) The Reeh~Schlieder theorem shows that
R*(B)Q, R?(B)Q, and E;R;(B)Q are respectively
dense in J, K;, and X, .

Since the restriction of the representation U to the
subspace JC; is unitarily equivalent to [my,, 0], there
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exists®15-17 a linear unitary map V, from J;, onto the
space of complex functions f on the submanifold of
R4,

{p eRY(p, p) = mj, p" > 0}
(upper sheet of mass hyperboloid), equipped with the
scalar product

9 = f AP dAp),

dQ(w(p), p) = dp20(p); o(p) = (* + m3)*.
Moreover, A
Vi Ula, AV¥(p) = eV, F)(A-Tp)
for all¥ e ;.

Ve is uniquely defined up to multiplication by a

constant of modulus one.

Let A4,(0) € R;(By), 45(0) € R;;(B,) [so that AF(0) e
R_;(By). AF(0)eR_,(B;)], where B, and B, are
bounded domains; denote

Hp) = [ijEjkAl(O)Q](p)9
f(p) = [ViEn4:0)Q)p),
g1(p) = [V_,E_; A1 (0)Q](p),
8;(}’) = [I”jkE—ka;(O)Q}(P)-
We have
f FOAADE™ dAp)
= (Q, 43(0)U(a, A)E;4,(0)Q).
In particular,
£ (DA — m3)O(p°)

= (2‘1”_)4 f(Q, A:(O)EjkAl(X).Q)e‘Wx da

(see Ref, 2).
Let us denote

WH(x) = (Q, 4(04(x)QD),
W (x) = (Q, A(x)43(0)Q),
C(X) = (Q: [A;(O)s Al(x)]g)’

W(p) = @m) f ) d',
C(p) = (2m) f 72 ({(x) dx

(in the sense of distributions). W+ has its support
contained in ¥*; it coincides with +C(p) in V*

15 E, P. Wigner, Ann. Math. 40, 149 (1939); reprinted in F. J,
Dyson, Symmetry Groups in Nuclear and Particle Physics (W. A.
Benjamin, Inc., New York, 1966).

16 R, F. Streater and A. S. Wightman, PCT, Spin and Statistics
and All That (W. A. Benjamin, Inc., New York, 1964).

17 A, S. Wightman, in Relations de dispersion et particules ele-
mentaires, C. deWitt and R. Omnes, Eds (Hermann & Cie, Paris,
1960).
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Moreover, the formula
WH(p) = (2m) f e A(0)Q, Ulx, DA,0)Q) dx

shows that W(p) is a spectral measure of the energy-
momentum operator; its support is therefore contained
in the set

{p:(p, p) = mjs, p° > 0}
U {p:(p, P) 2 M, p° > O}
Let o be a C* function of a real variable with support

contained in the open interval ]0, m?, [ and such that
a(m?) = 1. Then

Q) f (0, ANO)E,LU(x, DA0)Q) dx
= a(p)W*(p),
so that f¥(p) fi(p)é(p? — m2)0(p®) is the restriction of
W+(p), to any neighborhood of the hyperboloid
{p:(p, p) = m%,, p° > 0} not intersecting {p:(p, p) >
m? . +1}. Similarly,
g1(—=P)ga(—p)3(p® — m2; )0(—p°)
is the restriction of W—(p) to any neighborhood of
{p:(p,p) = m2,;, p* < O} not intersecting
{p:(p, p) 2 M2, pia}-

On the other hand, the support of C(x) is contained

in B, — B, + V*+ v V-, Denote

(%) = 0(—x9C), a(p) = Q2m) f 7 (x) dx,

Ax) = -0, r(p) = (2m) f 7H(x) dx,

a'(p) = (p° — mia(p), r'(p) = (p* — mi)r(p);
a'(p) [respectively, r'(p)] is the boundary value of a
function H*(k) [respectively, H-(k)] holomorphicin the
forward tube (respectively, the backward tube). a'(p)
and r'(p) coincide in {p:(p, p)* < m?%,,,} so that (by
the Jost-Lehmann-Dyson representation or by the
theorem of Glaser and Streater) H*(k) and H-(k) are
restrictions of a function H holomorphic in

{k=p+iq;(k,k)¢m] 1 + R},
C(p) = a(p) — r(p)

( H(p + ieq)
(p + ieq)® — mY,

— lim H(p — ieq) )

pits (p — ieq)* — mj,
with ge¥'*. This coincides with
2imH(p)d(p* — m3)e(p’)

in any neighborhood of {p: p* = mj,} not intersecting
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{p: p* > m% }. 1t follows that fX(p)fi(p) and
g{—p)g¥(—p) are restrictions of the same function

holomorphic on the whole complex hyperboloid
{k:(k, k) = m3}. This is equivalent to the following
property.

For each p such that (p, p) = m?,, p®* > 0, and for
each A, € L] the two functions

A= fYATAT DN ), AeLl,
— A~ gi(ATA DA D), ~ A€l

are the restrictions to L! and L} (respectively) of a
function holomorphic on the complex Lorentz group
L (C). [Note that if Ayf; denotes the function
P — fo(Agp), we have

Aofo = jkEikAéQ,

where
Aj = U0, ApA4(0)U(0, A)™ € R;(AoB,);

if Ay(0) € R7(By), then A, e Rj(AyB,)]. (Note: A
refinement of the above argument leads to the result of
Borchers®: m?, = m? ;,; an equivalent proof uses the
Jost-Lehmann-Dyson integral formula). We also
notice that, if 4,(0) € R7;(B,), then f; is in § on the
hyperboloid. This means that [p — fi(w(p), p)] € S(R?)
or, equivalently, that [A — £,(Ap)] € S8(LL).
We need the following result.

Lemma 2: One can normalize V,, and V_j, so that,
for every bounded domain B, and every 4,(0) € R3(B))
for which f; = VEp4,(0)Q, g¥ = V_,E_,A¥0)Q,
the two functions

A—fAp), (AeL),
—A—>g(Ap). (-Ael)
[where p is real and satisfies (p, p) = m?,, p® > 0] are
the restrictions to L] and L} (respectivély) of a
function holomorphic on the whole complex Lorentz
group L (C), and C* in A and p in
L (C) x {p:p* = m}, p" > O}.
The proof of this lemma is given in Appendix 2.
4. USE OF THE ASYMPTOTIC CONDITION

We now consider, as in Sec. 2, a finite sequence of
(n + 1) HA-fields, 4,,--*, 4, with the following
properties.

(1) 4,00) € R7, (B,) where B; is a bounded domain
inRL, d;eG 0L jLn

@) VopEapAOR=£;#0 0<j< ),

Vg EoaaANO)Q2 = g, # 0 (as a consequence).
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Jf; and g; are functions (in 8§) on the hyperboloid
{p: p* = mj, p* > 0} (m; is used instead of m,, in
the rest of this section).

The fields A4,, ‘-, 4, then describe the particles
(0, ky), * -+, (n, k,) and their antiparticles. It has been
shown by Araki® (see also the papers of Haag,!
Ruelle,’* Araki, Hepp, and Ruelle,'® and Hepp?-*)
that asymptotic outgoing and ingoing free fields can be
defined for each of these particles and that the corre-
sponding S-matrix is Lorentz invariant.

Let S, and S, be the two distributions (kernels of the
S-matrix) defined, on the manifold

r n
{p =(Po," ", D) 2P = 2 Di}
j=0 I=r+1

pi=mi,p0>0 (OShsn)},
by '

n n
Sl(p()a""pr;pr-f'l’"'spn)é(zpi_ z pl)
i=o 1=rF1

= (Q, agour(Po) " arout(?r)b:ﬂ in(Pre) " }): in(p)Y),

r n
Sﬁ(pns"':pr«i-l;prs."9p0)é(zpj— Z pl)
I=r+1

j=0
= (Q, a,out(Pn) ari1 0ut(Pr+1)b:in(Pr) T bgin(Po)Q)-

The creation and annihilation operators are those
of the asymptotic fields ¢, ., and ¢, ;, associated with
the HA-fields 4,,,

Prex(x) = 2m)E f d*pé(p® — mp)b(p")
X [a, ex(p)e_m]c + bi: ex(p)eim]-

Wehave, for A e L1, S)(Ap) = Si(p); S,(Ap) = Sx(p).

Let ¢g,*+, 9, be C* functions with compact
support in R?* such that: (1) The support of ¢, is
contained in {p € R*:0 < (p, p) < my, 4,11, p* > 0} for
0<h<n (2 For 0Kj<j'<r, r+1LIL
I’ < n, p; and @, (respectively, ¢, and ¢,) are “non-
overlapping,”®-# that is, if p;esupp ¢; and p; €
supp ¢, then

PPy # 0 (P)P;»

where wy(p;) = [p? + m2]}; this quantity will be
denoted w; in the sequel.
Using the asymptotic theory,®# it can be shown

13 D, Ruelle, Helv. Phys. Acta 35, 147 (1962).
) * H. Araki, K. Hepp, and D. Ruelle, Helv. Phys. Acta 35, 164
1962).
20 K. Hepp, Commun. Math. Phys. 1, 95 (1965).
*1 K. Hepp, in Brandeis University Summer Institute of Theoretical
Physics, Vol. 1, Axiomatic Field Theory, M. Chrétien and S. Deser,
Eds. (Gordon and Breach Science Publishers, Inc., New York, 1967).



that (for A e L})
Fi(A) =JSl(po, S De Prras s P)

- Z PL)
1= 1
X H gs(AP5)¢5(Ps)6Q’2 m)0(p?)

i=0

05 i<r

> P

xa(
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X II ft(APz)‘Pl(Pz)a(Pz —m)O(p}) dpy--

r+1<

is the limit, when ¢ —> oo of

Gy(A; 8) =

‘T(APo, Apn)é( Z pJ‘) H J(_p:i)

< i<n

x exp [i(p} + w)t] TI %(Pz)
rH1<iSn

X exp [—i(p] — w)t]dp, - - - dp,,.
Furthermore, setting A = [A](A > 0), one finds that
[F([AD — Gy([2]; D) < My(DK;(t),

where K,(t)— 0 and M{(2) does not increase faster

than a power of [4 + (1/4)] when A — o0 or 1 — 0.
It follows that, if y is a function in S(R) we have

Jim | dlﬂp[ (z - -)](1 + 1Y
x {Fy(IA) — G([A}; D} = 0,
Jim [ o[ (2= 3) o - G oy = o
Similarly, denoting
FiA) = [$ipas "+ Brvsi b2 20
X 5(20@ ——laélp,)

Xog’fi(Api)wi(Pj)a(p? — m)(p})

x TI glAp)e(p)é(p; — m)O(]) dps - -
r+1<1<n

and

.

capy,

Go(A; 1) = f (—Apy, -+, —Ap,) (035,,”’)

X H #{=p;)exp (@] + w1
X TI ‘Pz(Pz) exp [—i(p] — w1},

r+1<

one finds (setting A = [.2.—1}), for p € 8(R),

lim
4o

Iim

tr—co

@ 1
diy| {4 —
0 w[Z(

[

®da
3

b

1
2

(

%):l(l + 179
x{ga}([ﬂ)-%([ﬂsf)}=°a
) - () o

Using the results of Sec. 2, we see that there exists a
number R > 0 (depending on the supports of the ;)
such that, if supp ¢ (the support of the Fourier
transform of y) is contained in {r e R:|7| > R}, then

[l
fomo ) -
- m-af )

o3
a9
| 533 (e —£([5])) =0

Defining the new variable £ = 4[4 — (1/4)] and

F(§) = %{Fl([.%]) + F(BJ)} A=+ @+ D

Fy(d) = %(x + %)_I{Fl({l]) - FQ(H)}

we find that F,(§) and F,(£) are functions in S(R)
which satisfy

L " dE(OFL(8) dE = 0 = f " dEp(OF (&) dE.

F, and F, are Fourier transforms of functions with
support in {r:|7| < R} and are therefore restrictions
(to the real axis) of entire functions. Hence,

ram = £ 5= ) [+ ()R- 3)]

and

10 = SHERR]
R

are restrictions to {4 > 0} and to {4 < 0}, respectively,
of a function holomorphic in {AeC, A5 0}. In
other words, continuing F;([A]) holomorphically to
a negative value 4, of A, one obtains Fy([—4,)).

On the other hand, applying Lemma 2 [and the
fact that the topological space of functions of A and p,
C* in A and p and holomorphic in A coincides with
the space of (vector-valued) C* functions of p with
values in the space of holomorphic functions of A},
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we find that Fy([A]) has a holomorphic continuation
in {4 € C, 4 0} which, for real 1 < 0, is given by

fSI(po, e

s Prs Pry1s * "7 pn)
X 0<H< F(=1A1p) o p)d(p; — m?)@(p‘,’-)

x TI a(—[Ap)elp)d(p; — mH)o(p))
r+1<1<n
X 5(2% -2 Pz) dpy- - -dp,.
7=0 I=r+1

This must coincide with Fy([—A]). In particular,
setting A = —1 we obtain

f[s1(P0a C s Prs Dry1s ™" pn)

- S‘.’.(pn’ T pr+1;pr: T ’Po)](S(zP; - Z pl)
j=0 I=r+1

x T1 Fip)epHd(p; — m)B(p))

X H gz(Pz)‘Pl(Pz)‘XP? - m?)ﬁ(p?) dpy--+dp, = 0.

r+151<n
This being true for any choice of the HA-fields
Ay, , A,, the wavefunctions of the type

Hfa"Pi and 1:]_' 8%
3
are sufficiently numerous to ensure the equality of
SI(PO’ T Prs Prers spn) and Sz(Pn, CTy Pryts

Prs" " s Po)» Which expresses the CTP invariance of
the S-matrix.

5. GENERALIZATION: ARBITRARY SPINS

The arguments of the preceding sections can be
generalized to theories describing particles of arbitrary
spins. If half odd-integer spins occur, the assumptions
of Secs. 1 and 3 must be generalized as follows.

(I) One must postulate the existence of a continuous
unitary representation {a, M} — U(a, M) of the
covering group 31 of the Poincaré group, the existence
of a unique vacuum, and the positivity of energy. We
identify the covering group L.(C) of L (C) with
SL(2, C) x SL(2, C) (see Ref. 11) and the covering
group LT of L] with the subgroup of SL(2, C) x
SL(2, C) formed by the pairs (4, A) (4 denoting the
complex conjugate of the matrix 4). If M = (4, B) e
L, (C) and x € C*, we denote Mx the vector of C*such
that

(Mxy'r, = A(x*7,)BT
79 = 1; 71, 73, and 74 are the Pauli matrices.

(2) & = @ ¥;, G being an Abelian group as in

Sec. 3. e

N;
¥; = X; ®k6_>1']€;ik (Jj #0),

No
o= CQO K5 ® D Ky,
k=1
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N; may be infinite (0 < ).
(PP, | 35 > M3,
(P*P,) | 8y = mi;
0<my<myp <" <M; (0<))

(3) The restriction of the representation U of 1 to
J,. is unitarily equivalent to the irreducible repre-
sentation [my;, s;]. This means that there exists a
unitary operator ¥ (unique up to a phase factor)
mapping J¢; onto the space of square-integrable
(vector-valued) functions on the (half) hyperboloid
{p:(p, p) = m%, p® > 0} with values in C*#*1, Such
a function has 2s; 4+ 1 components f,, where a =
—Si> —Spe+ 1,0+, 55 — 1, 55 Tl is represented
in this space by

(U'(a, M)f)(p) = DS (Mp),
U'(a, M) = V,.U(a, M)V 7,
the scalar product being given by

() = [ 5 TP D) fop) 4, (P)
with '
5= S;.
Here, L — D%(L) is a well-known representation of the
full linear group GL(2, C) in C?*1 satisfying
DL = DYL)*, DUIF) =DWT; M—>DWM)
is the mapping of L,(C) defined by ﬂA)“[(A, B)] =
D(A). If peR? (or C%, p and p are the 2 X 2
matrices j=pl —p-7T, p =p°~l +p-T=phr,.
If (p, p)2 = m®> 0 and p°® > 0, m~1j and mp are
two inverse, positive definite matrices with deter-
minant 1.

(4) The existence of algebras R(B) with the same
properties as in the preceding sections, except cyclicity
of the vacuum, is postulated. Moreover, we assume
that, for every domain B of R4, there exists a set of
bounded operators /(B) such that: I(B) is a weakly
closed vector subspace of £(¥); I(B)* = I(B); if
B, © B,, I(B)) < I(B,);

Ua, M)I(B)U(a, M) = I(a + MB).
If B, and B, are spacelike separated and y, € I(B,),
y, € I(By,), A, € R(B,), then

Ve + Yoy = 0, yod; — pidy, = 05
if v, and v, cI(B), then yy, € R(B). For every
bounded B we define I°(B), I7(B) analogously to

R (B), R (B), (see Sec. 3). We assume that I7°(B) =
I”(B)* and that

[I7(B) Y RF(B)]L
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is a total system of vectors in JC;. We call a fermion
(respectively, boson) HA-field an operator-valued
function x — y(x) [respectively, x - A(x)] such that

p(x) = Ulx, Dp(O)U(x, ), 9(0) € I(B),
A(x) = U(x, DAO)U(x, 1), A4(0) € I(B),

for some j and some bounded B.

Borchers’ argument again shows that m; , = m_; ;..
Let v,(0) € I (By), w:(0) € I;°(By), B,, and B, being
bounded domains in R%. Denote

S1 = ViEp(0)Q2, fo=
&= —;'kE—jk%(O)*Q’ 8=

[where &, means: g,,(p) = g1.(p); E; = projector onto
3e5].

it is shown in Appendix 2 (Sec. A, 2.2) that, if
Ji (or f3) # 0, one must have s, = s5; and that 2s;,
must be odd. Furthermore, with a suitable normal-
ization of V_,,, there exists a function k — v,(k) holo-
morphic on the complex hyperboloid {k:(k, k) = m?}
with values in C?#1 such that, for p real, (p, p) =
mi, p° >0,

jkEjk'Pz(O)Qa
_inE—ipa(0)*Q2

v:(p) = f1(p),
vy(—p) = D (m7 pYD(r)g(p) (s = s5).

~

A similar discussion can be made for boson HA-fields.
This property allows us to generalize the argument of
Sec. 4; the S-matrix kernels are no longer Lorentz-
invariant, but (holomorphically) covariant. This
introduces only insignificant changes in the argument,

which we omit.
6. CONCLUSION

The proof presented here is provisional in two
respects: (1) It only proves the CTP invariance of the
S-matrix. A natural conjecture is that, in any theory
satisfying the assumptions of Sec. 1, there exists an
anti-unitary operator 6 such that 62 =1, 6Q = Q,
0U(a, N)§ = U(—a, A), and 0[R(B)]0 = R(— B). The
method of the present paper sheds no light on this
problem. (2) The CTP invariance of the S-matrix (with
the assumptions made here) would follow trivially if it
were shown that the holomorphy domain of the
p-space analytic function [known to be schlicht and
invariant under L (C)] contains points on the mass-
shell arbitrarily close to all physical points; the
presence of such points of analyticity is known at
present (for the general n-point function) only near
certain physical points, but there is good hope to
prove it in general.

Finally, it hardly needs to be remarked that the
result is not expected to strengthen the evidence for
the CTP invariance of nature. It rather serves to
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confirm the close relationship of theories of local
observables with Wightman field theories and the fact
that experimental evidence of violation of the CTP
invariance would force the abandonment of the present
notions of locality.
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APPENDIX 1

This appendix is devoted to an exercise in analytic

completion which is included for the reader’s con-

venience; the results are immediate consequences of
the ideas of Refs. 9, 10, 14, 22, and others.

Lemma AIl: Let D be a domain in CV, P a sub-
domain of D containing the origin O, and A a domain
in CY¥*1 of the form

A=NNQ,
where

Q=1{)z:2eC, Imi>0; z=(z,  ",zy)e D},

and N is an open connected neighborhood of the
set £
E={1zImA=0,13#0,z€ D}

Uil ziImA>0,Imz=0,z€P}.

Then (1) the envelope of holomorphy of A is Q; (2) if
K is a compact subset of Q, there is a compact subset
K' of E such that every function defined, and con-
tinuous in Q U E, holomorphic in £, obeys the
inequality

sup |f(4, 2} <_sup |f(A, 2.

(A,2)e K (A2

Proof: We can assume without loss of generality
that P contains the closure of a domain of the form

Po={z:lzjj <1, Imz;>0,1 <j< N}

22 J, Bros and V. Glaser, Enveloppe d’holomorphie de deux poly-
cercles (Centre d’Etudes Nucléaires de Saclay, Gif-sur-Yvette, 1961).
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We replace the variables 4, z by

p=1log (A — b)/(A — a) + log (A + a)/(2 + b);
{=1log (1 + z)/(1 — z;); z; =tanh }(;, (AIl)

where the log is defined as holomorphic in the upper
half-plane and equal to + o0 at 4 co on the real axis,
and0<a<b,ab=1.

By the Heine Borel lemma, for every 8, (0 < 6 < ),
there exists € > 0 such that A contains the set

A, b, €)
={hzir—e<Impy<m0<Im{ < in,
1<Lj<N)}
Ui, zir—0<Imu<m0<Im {; <e¢
I<j< N},

where x4 and {; stand for the functions of 4 and z;
defined above. A(0, b, ¢) is a domain if 8 is sufficiently
close to = [the condition is tan 6 > 2b/(b* — 1)].
Let f be a function holomorphic in the union of these
two open sets, which' is a domain invariant under the
transformation 4 — —1/A. We can always write

S, 2) = f4 2) + [A + (DI, 2),

fi3, 2) = 4 f(4, 2) + f(—1/4, 2)],
Ja@, 2) = Hf(4 2) — f(=1/4, 2)]

are holomorphic in the same domain (and, if f is
continuous at E, so are f, and f,); moreover,

f.;,a = (Ds,a(,u: Z);

where u and {; are the functions defined by (AIl) and
the function @, (resp @,) is holomorphic in the tube

{p, (r—e<Impu <7;0<Im{; < }m,
0<j< N);
U, (0<Imp<m,0<Im <e
O0<Lj< N}
The envelope of holomorphy of this tube (its convex

envelope) contains the union, when « varies between
0 and 4=, of the domains

Q' (e, 0) = {p, {:r — Qabjm) < Im p < 7;
0<Im{ <im— ol <j< N}

It follows that f(4,z) is analytic in the inverse
image Q(«, 0, b) of Q'(«, ). Forb — a > 2 cot («f/n),
Q(a, 6, b) is connected and has the shape indicated by
Fig. 1. It is easy to verify that the union of the domains
Q(a, 0, b) is

where

{4, z:Im A > 0,z € P;}.

Moreover, {(«, 6, b) is contained in the envelope of

HENRI EPSTEIN

2j -plane
{1gjsN)

~b —uloo b

Fic. 1. The domain Q(e, 8, b) is the topological product of the
domains represented. y = 2af/m; (b — a)® > 41%; y' = {(b — a)—
(b — a)f — 4r1})/2t5 " = {(b — @) + [(6 — a)* — 479H}; 1 = cot
(a0/m).

holomorphy of A(0, b, €) so that, when fis continuous

at E,
If(4, 2) < [f(2, 2)|

sup
(A4,2)eQ(«.8,b)

sup
(4',2')eA(0,0,¢)

and, letting € tend to 0, we obtain, when fis continuous
at E,

If (4, 2)| < If(, 2),

sup
(4,2)eQ(a,0,b)

sup
(X,5)cE(0,5)

where E(0, b) is the compact subset of E given by
E@®,b) = N Ae, 6, b).

>0

The lemma now follows from the following lemma,

Lemma AI2: Let D be a domain in CV, P a sub-
domain of D, and A a domain in C¥+? of the form
A=NnNQ,

Q={21eCImi>0;z=(z, ,2,)€ D},

and N is an open connected neighborhood of the
set F

F={2,2Imi#0,1=0,z¢e D}
VU{ldz;ImA>0,zeP}.

Then, (1) the envelope of holomorphy of A is Q; (2) if
K is a compact subset of €2, there is a compact subset
K’ of F such that every function f defined and con-
tinuous in Q U F, holomorphic in £, obeys the
inequality,
sup | f(2)] < sup |f(z)].
z2eK 2’eK’
Proof: (1) We first prove the theorem in a special
case,
P={z:]z; —i| < 1,1 <j< N},
D= {z:|z; — ki| <, 1 £ j < N},
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where 1 < . We make the change of variables

{i=—-1z)A <Lj<N),
p = log (A — b)(A — a) + log (A + a)/(% + b)

and apply the tube theorem as in the first part of the
proof of Lemma AIl.

(2) From the special case discussed above, it is easy
to deduce that the lemma is true when

P={z:lz; —w;| < «r, 1 <j < N},
D={z:lz; — | <r, 1 <j< N},

where 0 < « < 1, by taking the union of subdomain
in D to which (1) applies after a linear change of
coordinates.

(3) General case: Let Dy =P, Dy,
finite sequence of polydisks

-, D, bea

D, = {z:|z; — V| < 1,}

such that ™ e D,_,, r, >0 (2 <v» < m). Then D,
contains a polydisk

P, = {z:]z; — oM < k,r,} 2<v<m)
contained in D__,; applying (2) inductively we obtain
the lemma for

Ub,

v=1
and, since every point in D can be reached by a finite
chain of polydisks of the above type, the lemma
follows. (Note: suppose fis holomorphic in A, {Q,},;
is a family of subdomains of D, and {g;},; is a
family of functions such that g; is holomorphic in
{4, z:Im 4 > 0,z€Q;} and coincides with f in the
intersection of this domain with A. Then whenever
Q.NQ;# ¢, g.and g; coincide in {4, z:Im i > 0,
z e M £;}; hence there is a function g holomorphic in

{4, z:2Im2>0,zelU Q}}
jel

which coincides with g; in Q; for every j e I)
Lemma AIl is just what is needed in Sec. 2; we
leave the details to the reader.

APPENDIX II: PROOF OF LEMMA 2 AND
GENERALIZATION

Alll, Zero-Spin
We use the notations of the end of Sec. 3, replacing
my, by m for simplicity. Let
Ay(0) € R7(By), A5(0) € Rj(B,)
(B, and B, being bounded domains in R?),
Jo = ViEpAd0)Q, g;“ = V_pE_pAL0)*Q
(x=1,2).
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/. and (consequently) g, are supposed not identically
0. We have

A,(0) = f o.(a, ANU(a, NA U(a, A" da dA,
(x =1,2),

where A4, € R;(B,) and ¢, is C* with compact support
on §! (Poincaré group); the formulas

) = f Fulps N UA D) A (2= 1,2),
Afilp) = f FAT . A) f LA AT p) dA

= f AT D ATA)FUAT D) A (= 1,2),

show that, for real A; and p, A, f,(p) is a C* function
of these variables and for fixed A,, isin 8 as a function
on the hyperboloid. On the other hand, the weak
continuity of U(a, A) implies that

(Q, A3 U(a, ADA,Q) and (Q, A;U(a, A ALY Q)

are continuous functions of A; with values in the
tempered distributions (in fact, continuous bounded
functions) in a. By performing estimates similar to
those of Sec. 2 (or by using the Jost-Lehmann-Dyson
representation), it is possible to show that the p-space
analytic function H,'\l(k), holomorphic in {k:(k, k) ¢
m?, .. + R*}, which reduces in the tubes G* to the
Laplace transforms of

(—0O — mi0(—a®)(Q, [45*, U(a, ADA,U(a, A HQ)
and
(+ 0 + mi)0(a®)(Q, [43*, U(a, A)A,U(a, A)11Q)

depends continuously on A; (it is a continuous
function of k and A, in every compact). Therefore,

)M D)
is the restriction (to real p) of a function of A, and p
defined and continuous for real A, and complex p
(on the hyperboloid), and holomorphic in p; more
precisely, for every real p (p? = m?, p® > 0), there is a
continuous function of A,eL! and AeL,(C),
holomorphic in A, which reduces to

AT D) (AT A p).
As a consequence,
S3 (A7 p) A(ATI A p)
extends to a C* function of (A;, A) eL}r x L. (C),

holomorphic in A. It follows that, if A, A, €L],
{ e R, p is real, the function

Dy(Ag; As; 5 p) = f2(AS [ f(AT [ )
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can be extended to a function defined for complex
values of {, holomorphic in { and C® in all variables
simultaneously. The same holds if we replace f; by f;

or A, f; by
(@ADL Lo,

which shows the existence of functions
Doo(Ag; Ag; 85 p), Pon(Ags Ay L5 p).

C* in all variables, holomorphic in {, which, for real
¢, reduce to

FEAS eI fA AT (e )

SIS e D) AAT D),
respectively; /(A7 [e~¢]p) stands for

(d/dd) f(AT e ]p).

@,,(Ag; Ay; &5 p)
Oy0(Ag; Ag; L5 p)
Dy(Ag; Ay E5 p)
®po(Ag; A; G p)
Dp(Ag; Ag; 85 p)

Dpa(Ag; Ag; L5 p) ’

®,, being defined analogously to @,,. ¥y/5, ¥i,1, Vo e
are meromorphic functions of { depending differ-
entiably on A;, A,, p; they reduce, for real , to

HAT'E D) A [€Ip) fa(Aal[e“]p)_
S AT AT e p)
This implies that

and

Define

b

lFl/z(Ao; Ayl p) =
"I"'l/l(Al; &p) =

\F2/2(A0; &p)=

CICIAN S . .
@)Y ye _ SO
LF1/2

As the logarithmic derivative of a meromorphic
function, this expression is a meromorphic function
of { having only simple poles. These occur (1) at the
zeros of @,y (Ag; Ay; {5 p): the corresponding residue
is then a positive integer; (2) at the zeros of
Dyo(Ags Ay £ p): the corresponding residue is then a
negative integer.

Let u be a singular point of ¥,4(A;; ; p). We can
adjust A, so that @u(Ag; Ay; &;p) and ¥, so(Ags
Ay; L p) have no zeros or singularities for { = u.
Thus x4 must be a zero of ¥',x(Ag; Ay; £; p), whose
logarithmic derivative has a simple pole with positive
integral residue at u. Since Wy, is regular at u, ¥,
must have a simple pole with positive integral residue
at . Let us define

¢
¥i(Ay; §; p) = exp u V(A s p) dé’.':l
x fAT'[e]p)

HENRI EPSTEIN

the integral being taken along a smooth path skirting
the singularities of the integrand; {, € R. We obtain a
holomorphic function of { which, except possibly at
its zeros, depends differentiably on A, and p; the same
is true for

£,
Yo(Ao; & p) = [expﬁ lFZ/z(Ao; ) dC’]
X fAAG e ]p)
[, being real and not a zero of f(Aj*[e~*]p)]. We have

(dfd{) log W'y(As; {5 p)
= (d/d) log f(A7'[e*]p) for real £,

Yi(Ay; 45 p) and fi(AjY[e]p) are (for real {) C®
functions which are proportional to each other in any
interval separating their (common) zeros; these zeros
always have finite order; the two functions coincide
near {,. Therefore, they must coincide for all real .
The same holds for V', and f; . If 4 € C we can adjust
A so that Wy(Ay; {; p) has no zero in a neighborhood
of u; this implies that ¥, depends differentiably on {
and p near (u,p), and Wy,5(Ag; Ay 45 p) is C® in
Ay, L p near { = u, Al = Ay, p' = p. We also note
that, for real £ and complex {

WiA L+ & p) =Ti([€1A; 6 p),

a consequence of the corresponding identity for real {.
We call “timelike subgroup” of L,(C) a mapping
of Cinto L.(C) of the form

2(D) = Al 1A,
where Aye Ll is fixed. Let y,, -+, xy be timelike
subgroups, p be real, (p,p) =m? p°> 0. The
expression
AIAT M =L) - - 1(=E0)p]

is a C* function of Ay, &, -+, {y, p for real A,
{1, -, Ly, p. Furthermore, it is the restriction of the
function

‘Fl[Xkﬂ(Ckﬂ) 7 (4]
X Ag; Ges o1 (—Gd) - (=Pl

defined, C* in A, {;, -, v, p, and holomorphic in

gy for ¢, complex, AL Gy Gy, Ck+1’ T, CAV,P,
real. By the Malgrange-Zerner theorem,®?2* there
exists a function

Fy A3 5p) (where L= (G, -+, L))

defined and C® for real A,, p, complex {, and holo-
morphic in {. The argument now follows that of

23 B. Malgrange, unpublished (1961).
24 M. Zerner, Seminar Notes, Marseilles (1961).
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Ref. 10 (Sec. 11.3) and is only sketched here. The
functions of the type

Fllr"'-XIV(Al; Z;p)

are locally functions of y,({) - - - xn({x)A;, and p.
For fixed p, these functions yield a set §, of germs
of holomorphic functions on the complex Lorentz
group. §,, is a connected open subset of the sheaf of
germs of analytic functions on L,(C). Furthermore,
for every continuous curve ¢ — p(t)}{[0, 1] — L (C)}
in L,(C), and every §; € §, projecting onto y(0), there
exists a continuous map ¢ — $(¢) of [0, 1] into G, such
that #(0) = §, and, for each ¢, 7(¢) projects onto ().
By the monodromy theorem, G, is the set of germs
yielded by a function F(A4;p) defined and holo-

morphic on the covering group L. (C) of L.(C), such
that, for AeLl < L (C), F(4;p) = fi(A(4)7p).
Here, A — A(A) denotes the canonical homomor-
phism of L, (C) onto L,(C). Let N be the kernel of this
homomorphism; for 4,€ N and A€ L] we have
F(A4; p) = F(AAy; p). This identity extends to all
complex 4 € L (C) by analytic continuation so that
F(A; p) = F[A(A4); p], where F,(A;p) is a holo-
morphic function of A e L, (C). 1t is easy to verify
that F, is C* in both A and p. Fi(A; p) = fi(A~p) for
real A. It is only necessary to verify that, for ~A e L} ,
F,(—A; p) coincides with a multiple of g,(A~'p). For
this purpose we construct analogously a function
Gy(A; p) holomorphic for A € L, (C) and coinciding
with g,(—A~%p) for A€ L}. It is easy to verify that
each germ of G,(A; p) is proportional to the germ of
Fi(A;p) at the same point. Hence G,(A;p) =
w, Fi(A; p). A similar constant w, can be defined for
f> and g,. Because A — g(—A~lp)/g(—A~p) and
A — fi(A='p)] f(A~1p) are restrictions (to L{ and L)
of the same meromorphic function, we must have
w; = wy = w. Moreover, &w = 1. Redefining V_,;
by replacing it by w™'V_;, we obtain the result of
Lemma 2.

AIN2. Generalization (Case of Arbitrary Spin)

We use the notation of Sec. 5, replacing m;, by m,
s;x by s and s_, by s for simplicity. Let &, - -
,fl’ .
h, = VE 3 A0),

) h2s+1 )
* , f2s41 b€ (vector-valued) functions of the form
[resp ViE i (0)L2]
[resp Vi Espi(0)Q]
1<i<2s+ 1,
where 4,(0) € R33(B), 4,(0) € R3(B)), v0) € IR(B)),
y(0) € I(B,), B, and B, being bounded domains
(1 <1< 2s+1).Foreach (1 <1< 25+ 1), hand

fHi=VuE a‘kAz(O)Qa
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J: are functions on {p:(pp) = m?, p® > 0} with values
in C2#*1; their components will be denoted:
has fur» where o= —s, —s+1,---,5—1, s

Let H and F denote the matrix-valued functions?s
(on the hyperboloid) with matrix-elements (H),(p) =
ha(P), (F)u(p) = fu(p). We choose H and F so that
det H % 0, det F 5% 0. There exists a matrix-valued
function @y of My, M,, {, p, defined and C® in the

variables My, My e L], {eC, peip:(p,p) = m?,
p'® > 0} which coincides, for real {, with
D MYHM e} D'(P)

x {DA M)F(MT[e~]p)}
(the proof is the same as in the spinless case; Sec. AIll).
Here, L] has been identified with the subgroup of
SL(2, C) x SL(2, C) = L,(C) consisting of pairs of
the form (4, A). This subgroup is isomorphic to
SL(2, C). The function M — D(M) is defined on
L(C) by .

D’l(4, B)] = D(4)
and defines a holomorphic representation of L,(C).
IfMeL(C),M=(A,B),and peR*(orpeC, Mp
is the vector such that
(Mp)r, = A(p*r,)B",
(ro = 1, 7, 75, 73 Pauli matrices),

J% is the element of the Lie algebra of L, (C) given
by (371, 37); one has: e/ p = [¢]p. The above
properties of @y x(Ag; Ay; {; p) are obtained just as
in the scalar case. Similarly, there exists a function

@4 5, of the same variables, with the same properties,
which coincides, for real £, with

(D" MYH(M e Ip) D (p)(d]dY)
x {D(& M)OF(M7 e ]p)}
and functions, meromorphic in {, defined by
¥ - p(Mo; My; 85 p)
= (@ x(Mo; My; 35 PO, p(Mo; My; L p),
Yy 5(Mi; 85 p)
=[Oy p(My; My; §; P17 Oy (My; M L; p),
¥y-15(Mo; L; p)
= [®pu(My; My; §; p)I7 @ ypu(M,; Mo§§P),
note that one also has
q’p—li'(Mﬁ C;P)
= [Qpp(My; My; § P Qps(My; My; {5 p)

25 The idea of using these matrices was kindly suggested to the
author by Dr. J. J. Loeffel.
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since the two expressions given for this meromorphic
function of { coincide, for real {, with

(D MYF(M e 1)y (d/dl)
x (D" MYF(M e Ip)}.
D being a positive real number, we restrict M,,
M, p to take their values in small open subsets of
LT and of the hyperboloid chosen so that the functions
[@yu(Mo; My; L; p))* and ¥ i (M £; p) have no
common pole in {{:|{| < D}. Let [, — 7, & + 7]
be an interval of the real axis contained in {{:|{| < D3},
where W 5(My; (3p) and Wyoz,(M,y; ; p) are
regular. The linear differential equations

di{ X(0) = XY y15(My; L p),

d

X Y(O) = YO¥r15(M; {5 p)
[where the unknowns X({) and Y({) are matrix-valued
functions] possess in suitable complex neighborhoods
of the real segment [§, — 7, & + 7], unique solutions,
denoted X(M,; {; p) and Y(M,; {; p) coinciding with

D" MYF(M e 1p),
D" MYHM; [e1p),

respectively, for real (e€[§, — 7, § + 7). These
solutions are holomorphic in { and C* in M,, {, p or
M,, {, p, respectively. As it is well known from the
theory of linear differential equations (see Refs. 26
and 27) X (respectively, Y) can be analytically continued
along any path, in the complex { plane, which does not
pass through a pole of ¥ 5. 5 (respectively, ¥'5-15). Let
O be as imply connected domain of the complex plane
containing &, (e.g., a neighborhood of a path), contain-
ing no pole of [Py 4(M,; My; {; p)I™ but possibly con-
taining poles of Wy 1z. In this domain Y(M,; {; p)
admits of a single-valued analytic continuation which
we continue to denote by the same symbol. Since
y = det Y satisfies the equation

yHO@y/a)(d) = tr Vy-155(0)

in O (see Ref. 27), Y is regular in O. On the other
hand, Y1 x(My; M5 C; p) is also regular in O and
coincides near &, with Y~*X (since this equality holds
for {e[& — 7, & + 7]) so that X = YW, hasa
single-valued continuation in ©. Using the mono-
dromy theorem, one finds that X has a single-valued
continuation in the disk {{:|{| < D}.

26 E, Goursat, Cours d’analyse mathematique (Gauthier-Villars,
Paris, 1929) Vol. II.

27 §. Lefschetz, Differential Equations: Geometric Theory (Inter-
science Publishers, Inc., New York, 1963) 2nd ed., pp. 55 ff.
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On the real axis

YX = Wiy = (DU MoH(Mz e p)}
x {7 MYF(M e Ip)};

because ¥ and X are not singular at the same points
in the di